
Smart Alex’s Answers  

Chapter 7 

Task 1 

• A fashion student was interested in factors that predicted the salaries of catwalk 

models. She collected data from 231 models. For each model she asked them their 

salary per day on days when they were working (salary), their age (age), how 

many years they had worked as a model (years), and then got a panel of experts 

from modelling agencies to rate the attractiveness of each model as a percentage 

with 100% being perfectly attractive (beauty). The data are in the file 

Supermodel.sav. Unfortunately, this fashion student bought some substandard 

statistics text and so doesn’t know how to analyse her data.☺ Can you help her 

out by conducting a multiple regression to see which factor predict a model’s 

salary? How valid is the regression model? 
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To begin with, a sample size of 231 with three predictors seems reasonable because this 

would easily detect medium to large effects (see the diagram in the chapter). 

Overall, the model accounts for 18.4% of the variance in salaries and is a significant fit of 

the data (F(3, 227) = 17.07, p < .001). The adjusted R2 (.17) shows some shrinkage from 

the unadjusted value (.184) indicating that the model may not generalize well. We can 

also use Stein’s formula: 
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This also shows that the model may not cross-generalize well. 

Coefficientsa

-60.890 16.497 -3.691 .000 -93.396 -28.384
6.234 1.411 .942 4.418 .000 3.454 9.015 .079 12.653

-5.561 2.122 -.548 -2.621 .009 -9.743 -1.380 .082 12.157

-.196 .152 -.083 -1.289 .199 -.497 .104 .867 1.153

(Constant)
Age (Years)
Number of Years
as a Model
Attractiveness (%)

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Tolerance VIF
Collinearity Statistics

Dependent Variable: Salary per Day (£)a. 

 

In terms of the individual predictors we could report: 



 B SE B β 

    

Constant –60.89 16.50  

Age 6.23 1.41 .94** 

Years as a model –5.56 2.12 –.55* 

Attractiveness –0.20 0.15 –.08 

Note: R2 = .18 (p < .001). * p < .01, ** p < .001. 

It seems as though salaries are significantly predicted by the age of the model. This is a 

positive relationship (look at the sign of the beta), indicating that as age increases, 

salaries increase too. The number of years spent as a model also seems to significantly 

predict salaries, but this is a negative relationship indicating that the more years you’ve 

spent as a model, the lower your salary. This finding seems very counter-intuitive, but 

we’ll come back to it later. Finally, the attractiveness of the model doesn’t seem to 

predict salaries. 

If we wanted to write the regression model, we could write it as: 

0 1 2 2Salary Age Experience Attractiveness
60.89 (6.23Age ) (5.56Experience )(0.02Attractiveness )

i i i

i i i

β β β β= + + +

= − + −
 

The next part of the question asks whether this model is valid. 
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Scatterplot

Dependent Variable: Salary per Day (£)
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Partial Regression Plot
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 Residuals: There six cases that have a standardized residual greater than 3, and 

two of these are fairly substantial (case 5 and 135). We have 5.19% of cases with 

standardized residuals above 2, so that’s as we expect, but 3% of cases with 

residuals above 2.5 (we’d expect only 1%), which indicates possible outliers.  

 Normality of errors: The histogram reveals a skewed distribution indicating that 

the normality of errors assumption has been broken. The normal P–P plot verifies 

this because the dashed line deviates considerably from the straight line (which 

indicates what you’d get from normally distributed errors). 

  Homoscedasticity and independence of errors: The scatterplot of ZPRED vs. 

ZRESID does not show a random pattern. There is a distinct funnelling indicating 

heteroscedasticity. However, the Durbin–Watson statistic does fall within Field’s 

recommended boundaries of 1–3, which suggests that errors are reasonably 

independent.  

 Multicollinearity: For the age and experience variables in the model, VIF values 

are above 10 (or alternatively, tolerance values are all well below 0.2) indicating 



multicollinearity in the data. In fact, if you look at the correlation between these 

two variables it is around .9! So, these two variables are measuring very similar 

things. Of course, this makes perfect sense because the older a model is, the more 

years she would’ve spent modelling! So, it was fairly stupid to measure both of 

these things! This also explains the weird result that the number of years spent 

modelling negatively predicted salary (i.e. more experience = less salary!): in fact 

if you do a simple regression with experience as the only predictor of salary you’ll 

find it has the expected positive relationship. This hopefully demonstrates why 

multicollinearity can bias the regression model. 

All in all, several assumptions have not been met and so this model is probably fairly 

unreliable. 

Task 2 

• Using the Glastonbury data from this chapter (with the dummy coding in 

GlastonburyDummy.sav), which you should’ve already analysed, comment on 

whether you think the model is reliable and generalizable. 

 

This question asks whether this model is valid. 
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Scatterplot
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Partial Regression Plot
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Partial Regression Plot
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Partial Regression Plot
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 Residuals: There are no cases that have a standardized residual greater than 3. We 

have 4.07% of cases with standardized residuals above 2, so that’s as we expect, 

and .81% of cases with residuals above 2.5 (and we’d expect 1%), which indicates 

the data are consistent with what we’d expect.  

 Normality of errors: The histogram looks reasonably normally distributed 

indicating that the normality of errors assumption has probably been met. The 



normal P–P plot verifies this because the dashed line doesn’t deviate much from 

the straight line (which indicates what you’d get from normally distributed 

errors). 

  Homoscedasticity and independence of errors: The scatterplot of ZPRED vs. 

ZRESID does look a bit odd with categorical predictors, but essentially we’re 

looking for the height of the lines to be about the same (indicating the variability 

at each of the three levels is the same). This is true indicating homoscedasticity. 

The Durbin–Watson statistic also falls within Field’s recommended boundaries of 

1–3, which suggests that errors are reasonably independent.  

 Multicollinearity: For all variables in the model, VIF values are below 10 (or 

alternatively, tolerance values are all well above 0.2) indicating no 

multicollinearity in the data.  

All in all, the model looks fairly reliable (but you should check for influential cases!). 

Task 3 

• A study was carried out to explore the relationship between aggression and 

several potential predicting factors in 666 children who had an older sibling. 

Variables measured were Parenting_Style (high score = bad parenting practices), 

Computer_Games (high score = more time spent playing computer games), 

Television (high score = more time spent watching television), Diet (high score = 

the child has a good diet low in E-numbers), and Sibling_Aggression (high score 

= more aggression seen in their older sibling). Past research indicated that 

parenting style and sibling aggression were good predictors of the level of 



aggression in the younger child. All other variables were treated in an exploratory 

fashion. The data are in the file Child Aggression.sav. Analyse them with 

multiple regression.   

 

We need to conduct this analysis hierarchically entering parenting style and sibling 

aggression in the first step (forced entry) and the remaining variables in a second step 

(stepwise): 

 

 



 

 

 

 



 

  

 

 

 

 

 



 

 

 

 

Based on the final model (which is actually all we’re interested in) the following 

variables predict aggression: 

 



• Parenting style (b = 0.062, β = 0.194, t = 4.93, p < .001) significantly predicted 

aggression. The beta value indicates that as parenting increases (i.e. as bad 

practices increase), aggression increases also. 

• Sibling aggression (b = 0.086, β = 0.088, t = 2.26, p < .05) significantly predicted 

aggression. The beta value indicates that as sibling aggression increases (became 

more aggressive), aggression increases also. 

• Computer games (b = 0.143, β = 0.037, t = 3.89, p < .001) significantly predicted 

aggression. The beta value indicates that as the time spent playing computer 

games increases, aggression increases also. 

• E-numbers (b = -.112, β =-0.118, t = -2.95, p < .01) significantly predicted 

aggression. The beta value indicates that as the diet improved, aggression 

decreased. 

The only factor not to predict aggression was: 

 Television (b if entered = .032, t = 0.72, p > .05) did not significantly predict 

aggression. 

Based on the standardized beta values, the most substantive predictor of aggression was 

actually parenting style, followed by computer games, diet and then sibling aggression. 

R2 is the squared correlation between the observed values of aggression and the values of 

aggression predicted by the model. The values in this output tell us that sibling 

aggression and parenting style in combination explain 5.3% of the variance in aggression. 

When computer game use is factored in as well, 7% of variance in aggression is 

explained (i.e. an additional 1.7%). Finally, when diet is added to the model, 8.2% of the 



variance in aggression is explained (an additional 1.2%). With all four of these predictors 

in the model still less than of the variance in aggression can be explained. 

The Durbin–Watson statistic tests the assumption of ‘independence of errors’, which 

means that for any two observations (cases) in the regression, their residuals should be 

uncorrelated (or independent). In this output the Durbin–Watson statistic falls within the 

recommended boundaries of 1–3, which suggests that errors are reasonably independent. 

The scatterplot helps us to assess both homoscedasticity and independence of errors. The 

scatterplot of ZPRED vs. ZRESID does show a random pattern and so indicates no 

violation of the independence of errors assumption. Also, the errors on the scatterplot do 

not funnel out, indicating homoscedascitity of errors, thus no violations of these 

assumptions. 

 

 


