Smart Alex's Answers

Chapter 7

Task 1

• A fashion student was interested in factors that predicted the salaries of catwalk models. She collected data from 231 models. For each model she asked them their salary per day on days when they were working (salary), their age (age), how many years they had worked as a model (years), and then got a panel of experts from modelling agencies to rate the attractiveness of each model as a percentage with 100% being perfectly attractive (beauty). The data are in the file Supermodel.sav. Unfortunately, this fashion student bought some substandard statistics text and so doesn't know how to analyse her data.^(C) Can you help her out by conducting a multiple regression to see which factor predict a model's salary? How valid is the regression model?

Model	Summaryb
-------	----------

							Change Stati	stics		
			Adjusted	Std. Error of	R Square					Durbin-W
Mod	el R	R Square	R Square	the Estimate	Change	F Change	df1	df2	Sig. F Change	atson
1	.429 ^a	.184	.173	14.57213	.184	17.066	3	227	.000	2.057

a. Predictors: (Constant), Attractiveness (%), Number of Years as a Model, Age (Years)

b. Dependent Variable: Salary per Day (£)

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	10871.964	3	3623.988	17.066	.000 ^a
	Residual	48202.790	227	212.347		
	Total	59074.754	230			

 Predictors: (Constant), Attractiveness (%), Number of Years as a Model, Age (Years)

b. Dependent Variable: Salary per Day (£)

To begin with, a sample size of 231 with three predictors seems reasonable because this would easily detect medium to large effects (see the diagram in the chapter).

Overall, the model accounts for 18.4% of the variance in salaries and is a significant fit of the data (F(3, 227) = 17.07, p < .001). The adjusted R^2 (.17) shows some shrinkage from the unadjusted value (.184) indicating that the model may not generalize well. We can also use Stein's formula:

adjusted
$$R^2 = 1 - \left[\left(\frac{231 - 1}{231 - 3 - 1} \right) \left(\frac{231 - 2}{231 - 3 - 2} \right) \left(\frac{231 + 1}{231} \right) \right] (1 - 0.184)$$

= 1 - [1.031](0.816)
= 1 - 0.841
= 0.159

This also shows that the model may not cross-generalize well.

					Sectionentes					
			lardized cients	Standardized Coefficients			95% Confidence	e Interval for B	Collinearity	y Statistics
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tolerance	VIF
1	(Constant)	-60.890	16.497		-3.691	.000	-93.396	-28.384		
	Age (Years)	6.234	1.411	.942	4.418	.000	3.454	9.015	.079	12.653
	Number of Years as a Model	-5.561	2.122	548	-2.621	.009	-9.743	-1.380	.082	12.157
	Attractiveness (%)	196	.152	083	-1.289	.199	497	.104	.867	1.153

Coefficients^a

a. Dependent Variable: Salary per Day (£)

In terms of the individual predictors we could report:

В	SE B	β
-60 89	16 50	
6.23	1.41	.94**
-5.56	2.12	55*
-0.20	0.15	08
	-60.89 6.23 -5.56	-60.89 16.50 6.23 1.41 -5.56 2.12

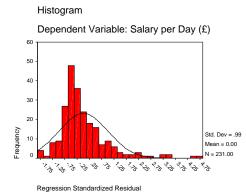
Note: $R^2 = .18 (p < .001)$. * p < .01, ** p < .001.

It seems as though salaries are significantly predicted by the age of the model. This is a positive relationship (look at the sign of the beta), indicating that as age increases, salaries increase too. The number of years spent as a model also seems to significantly predict salaries, but this is a negative relationship indicating that the more years you've spent as a model, the lower your salary. This finding seems very counter-intuitive, but we'll come back to it later. Finally, the attractiveness of the model doesn't seem to predict salaries.

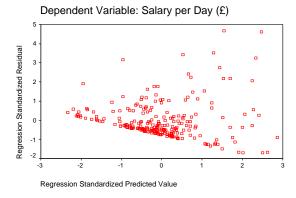
If we wanted to write the regression model, we could write it as:

Salary =
$$\beta_0 + \beta_1 Age_i + \beta_2 Experience_i + \beta_2 Attractiveness_i$$

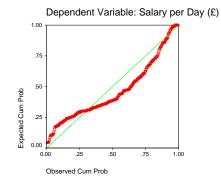
= -60.89 + (6.23Age_i) - (5.56Experience_i)(0.02Attractiveness_i)

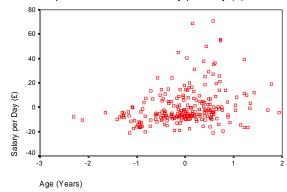

The next part of the question asks whether this model is valid.

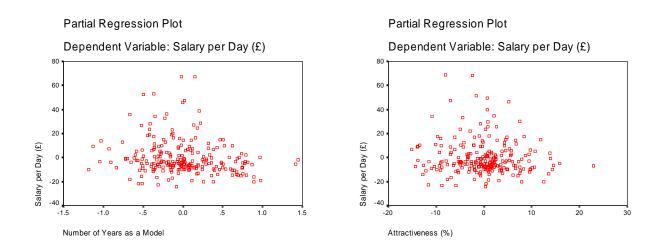
				Variance Proportions			
			0			Number of	
Model	Dimension	Eigenvalue	Condition Index	(Constant)	Age (Years)	Years as a Model	Attractiveness (%)
1	1	3.925	1.000	.00	.00	.00	.00
	2	.070	7.479	.01	.00	.08	.02
	3	.004	30.758	.30	.02	.01	.94
	4	.001	63.344	.69	.98	.91	.04


		Salary per	Predicted	
Case Number	Std. Residual	Day (£)	Value	Residual
2	2.186	53.72	21.8716	31.8532
5	4.603	95.34	28.2647	67.0734
24	2.232	48.87	16.3444	32.5232
41	2.411	51.03	15.8861	35.1390
91	2.062	56.83	26.7856	30.0459
116	3.422	64.79	14.9259	49.8654
127	2.753	61.32	21.2059	40.1129
135	4.672	89.98	21.8946	68.0854
155	3.257	74.86	27.4025	47.4582
170	2.170	54.57	22.9401	31.6254
191	3.153	50.66	4.7164	45.9394
198	3.510	71.32	20.1729	51.1478

Casewise Diagnostics^a


a. Dependent Variable: Salary per Day (£)




Normal P-P Plot of Regression Standardiz

Partial Regression Plot

Dependent Variable: Salary per Day (£)

- ✓ *Residuals*: There six cases that have a standardized residual greater than 3, and two of these are fairly substantial (case 5 and 135). We have 5.19% of cases with standardized residuals above 2, so that's as we expect, but 3% of cases with residuals above 2.5 (we'd expect only 1%), which indicates possible outliers.
- ✓ Normality of errors: The histogram reveals a skewed distribution indicating that the normality of errors assumption has been broken. The normal P−P plot verifies this because the dashed line deviates considerably from the straight line (which indicates what you'd get from normally distributed errors).
- ✓ Homoscedasticity and independence of errors: The scatterplot of ZPRED vs. ZRESID does not show a random pattern. There is a distinct funnelling indicating heteroscedasticity. However, the Durbin–Watson statistic does fall within Field's recommended boundaries of 1–3, which suggests that errors are reasonably independent.
- ✓ *Multicollinearity*: For the age and experience variables in the model, VIF values are above 10 (or alternatively, tolerance values are all well below 0.2) indicating

multicollinearity in the data. In fact, if you look at the correlation between these two variables it is around .9! So, these two variables are measuring very similar things. Of course, this makes perfect sense because the older a model is, the more years she would've spent modelling! So, it was fairly stupid to measure both of these things! This also explains the weird result that the number of years spent modelling negatively predicted salary (i.e. more experience = less salary!): in fact if you do a simple regression with experience as the only predictor of salary you'll find it has the expected positive relationship. This hopefully demonstrates why multicollinearity can bias the regression model.

All in all, several assumptions have not been met and so this model is probably fairly unreliable.

Task 2

Using the Glastonbury data from this chapter (with the dummy coding in GlastonburyDummy.sav), which you should've already analysed, comment on whether you think the model is reliable and generalizable.

This question asks whether this model is valid.

						Change	Statistic	s		
			Adjusted	Std. Error of	R Square				Sig. F	Durbin-
Model	R	R Square	R Square	the Estimate	Change	F Change	df1	df2	Change	Watson
1	.276 ^a	.076	.053	.68818	.076	3.270	3	119	.024	1.893

Model Summary^b

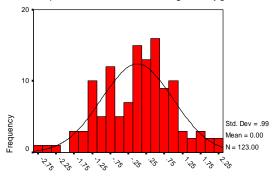
a. Predictors: (Constant), No Affiliation vs. Indie Kid, No Affiliation vs. Crusty, No Affiliation vs. Metaller

b. Dependent Variable: Change in Hygiene Over The Festival

Coefficients^a

		Unstand Coeffi	lardized cients	Standardized Coefficients			95% Confidence	e Interval for B	Collinearity	/ Statistics
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tolerance	VIF
1	(Constant)	554	.090		-6.134	.000	733	375		
	No Affiliation vs. Crusty	412	.167	232	-2.464	.015	742	081	.879	1.138
	No Affiliation vs. Metaller	.028	.160	.017	.177	.860	289	.346	.874	1.144
	No Affiliation vs. Indie Kid	410	.205	185	-2.001	.048	816	004	.909	1.100

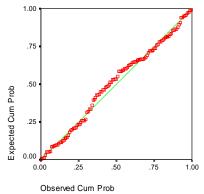
a. Dependent Variable: Change in Hygiene Over The Festival

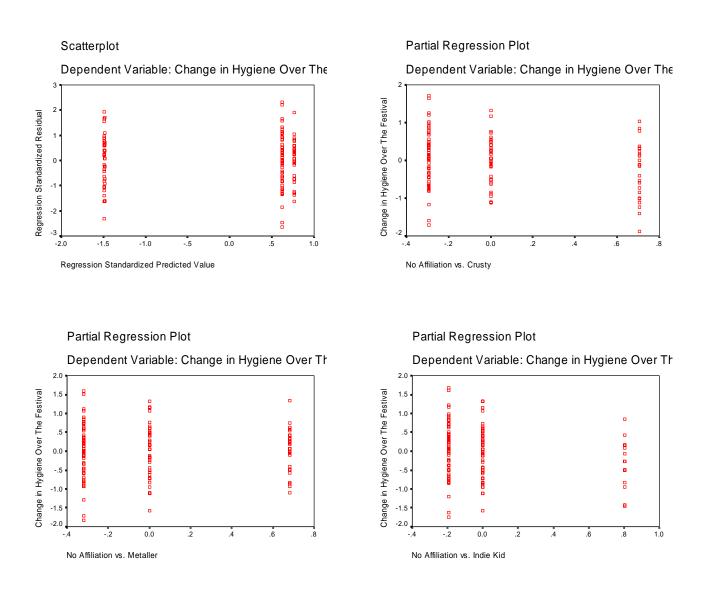

			Colline	arity Diagnos	tics		
					Variance	Proportions	
			Condition		No Affiliation	No Affiliation	No Affiliation
Model	Dimension	Eigenvalue	Index	(Constant)	vs. Crusty	vs. Metaller	vs. Indie Kid
1	1	1.727	1.000	.14	.08	.08	.05
	2	1.000	1.314	.00	.37	.32	.00
	3	1.000	1.314	.00	.07	.08	.63
	4	.273	2.515	.86	.48	.52	.32
a. De	ependent Varia	ble: Change in	Hygiene Ove	r The Festival			

	Casewise Diagnostics ⁴									
Case Number	Std. Residual	Change in Hygiene Over The Festival	Predicted Value	Residual						
31	-2.302	-2.55	9658	-1.5842						
153	2.317	1.04	5543	1.5943						
202	-2.653	-2.38	5543	-1.8257						
346	-2.479	-2.26	5543	-1.7057						
479	2.215	.97	5543	1.5243						

a. Dependent Variable: Change in Hygiene Over The Festival

Histogram


Dependent Variable: Change in Hygiene Over The



Regression Standardized Residual

Normal P-P Plot of Regression Standar

Dependent Variable: Change in Hygiene

- ✓ *Residuals*: There are no cases that have a standardized residual greater than 3. We have 4.07% of cases with standardized residuals above 2, so that's as we expect, and .81% of cases with residuals above 2.5 (and we'd expect 1%), which indicates the data are consistent with what we'd expect.
- ✓ *Normality of errors*: The histogram looks reasonably normally distributed indicating that the normality of errors assumption has probably been met. The

normal P–P plot verifies this because the dashed line doesn't deviate much from the straight line (which indicates what you'd get from normally distributed errors).

- ✓ Homoscedasticity and independence of errors: The scatterplot of ZPRED vs.
 ZRESID does look a bit odd with categorical predictors, but essentially we're looking for the height of the lines to be about the same (indicating the variability at each of the three levels is the same). This is true indicating homoscedasticity. The Durbin–Watson statistic also falls within Field's recommended boundaries of 1–3, which suggests that errors are reasonably independent.
- ✓ Multicollinearity: For all variables in the model, VIF values are below 10 (or alternatively, tolerance values are all well above 0.2) indicating no multicollinearity in the data.

All in all, the model looks fairly reliable (but you should check for influential cases!).

Task 3

A study was carried out to explore the relationship between aggression and several potential predicting factors in 666 children who had an older sibling. Variables measured were Parenting_Style (high score = bad parenting practices), Computer_Games (high score = more time spent playing computer games), Television (high score = more time spent watching television), Diet (high score = the child has a good diet low in E-numbers), and Sibling_Aggression (high score = more aggression seen in their older sibling). Past research indicated that parenting style and sibling aggression were good predictors of the level of

aggression in the younger child. All other variables were treated in an exploratory fashion. The data are in the file **Child Aggression.sav**. Analyse them with multiple regression.

We need to conduct this analysis hierarchically entering parenting style and sibling aggression in the first step (forced entry) and the remaining variables in a second step (stepwise):

Linear Regression	Linear Regression	X
Aggression [Aggression] Aggression [Aggression] Aggression [Aggression] Biock 1 of 2 Stabing Aggression [Stabi Previous	Plots Ime spert watching tel Ime spert watching tel Ime spert watching tel Image: Spert watching tel Image: Spect tel Image: Spect tel Saye Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel Image: Spect tel	tistics iots ave tions

Model Summary^d

Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
1	.231ª	.053	.050	.31125	.053	18.644	2	663	.000	
2	.264 ^b	.070	.066	.30875	.017	11.787	1	662	.001	
3	.286°	.082	.076	.30697	.012	8.682	1	661	.003	1.911

a. Predictors: (Constant), Parenting Style, Sibling Aggression

b. Predictors: (Constant), Parenting Style, Sibling Aggression, Use of Computer Games.

c. Predictors: (Constant), Parenting Style, Sibling Aggression, Use of Computer Games., Good Diet

d. Dependent Variable: Aggression

Coefficients^a

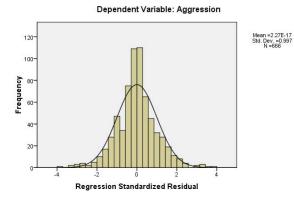
		Unstandardized Coefficients		Standardized Coefficients			95% Confidence Interval for B		Correlations		Collinearity Statistics		
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	006	.012		479	.632	029	.018					
	Sibling Aggression	.093	.038	.096	2.491	.013	.020	.167	.129	.096	.094	.970	1.031
	Parenting Style	.062	.012	.194	5.057	.000	.038	.086	.211	.193	.191	.970	1.031
2	(Constant)	007	.012		574	.566	030	.017					
	Sibling Aggression	.068	.038	.070	1.793	.073	006	.142	.129	.070	.067	.933	1.072
	Parenting Style	.054	.012	.170	4.385	.000	.030	.079	.211	.168	.164	.937	1.067
	Use of Computer Games.	.126	.037	.134	3.433	.001	.054	.197	.186	.132	.129	.918	1.090
3	(Constant)	006	.012		497	.619	029	.017					
	Sibling Aggression	.086	.038	.088	2.258	.024	.011	.161	.129	.087	.084	.908	1.101
	Parenting Style	.062	.013	.194	4.925	.000	.037	.087	.211	.188	.184	.897	1.115
	Use of Computer Games.	.143	.037	.153	3.891	.000	.071	.216	.186	.150	.145	.893	1.120
	Good Diet	112	.038	118	-2.947	.003	186	037	009	114	110	.870	1.150

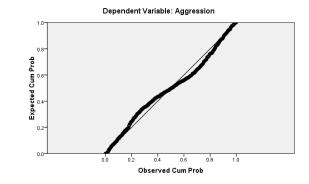
a. Dependent Variable: Aggression

Excluded Variables^d

						Collinearity Statistics			
Model		Beta In	t	Siq.	Partial Correlation	Tolerance	VIF	Minimum Tolerance	
1	Time spent watching television.	.049 ^a	1.091	.276	.042	.704	1.421	.704	
	Use of Computer Games.	.134 ^a	3.433	.001	.132	.918	1.090	.918	
	Good Diet	092ª	-2.313	.021	090	.894	1.119	.894	
2	Time spent watching television.	.044 ^b	.986	.324	.038	.703	1.423	.703	
	Good Diet	118 ^b	-2.947	.003	114	.870	1.150	.870	
3	Time spent watching television.	.032°	.715	.475	.028	.697	1.436	.669	

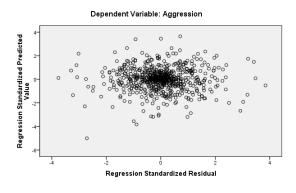
a. Predictors in the Model: (Constant), Parenting Style, Sibling Aggression

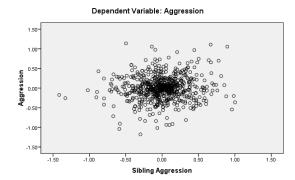

b. Predictors in the Model: (Constant), Parenting Style, Sibling Aggression, Use of Computer Games.

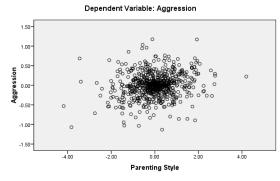

c. Predictors in the Model: (Constant), Parenting Style, Sibling Aggression, Use of Computer Games., Good Diet

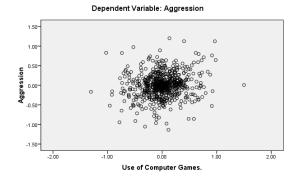
d. Dependent Variable: Aggression

Histogram

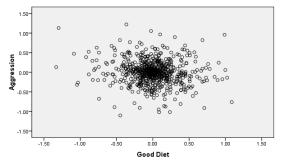

Normal P-P Plot of Regression Standardized Residual







Partial Regression Plot



Partial Regression Plot

Partial Regression Plot

Dependent Variable: Aggression

Casewise Diagnostics"									
Case Number	Std. Residual	Aggression	Predicted Value	Residual					
2	2.281	.77	.0710	.70014					
45	-3.067	93	.0106	94162					
47	2.405	.84	.1053	.73842					
71	-2.496	86	0942	76622					
75	2.126	.74	.0849	.65261					
157	3.845	1.13	0529	1.18037					
163	-2.084	68	0423	63962					
169	3.182	.85	1251	.97673					
182	2.051	.81	.1775	.62946					
199	2.505	.58	1879	.76897					
200	3.026	.75	1805	.92899					
204	2.080	.63	0120	.63837					
217	-2.712	-1.30	4630	83263					
221	3.205	1.14	.1543	.98372					
266	2.085	.59	0533	.64012					
270	-3.018	73	.1936	92649					
351	2.386	.74	.0101	.73259					
374	2.923	.65	2495	.89716					
375	2.263	.68	0170	.69483					
379	-2.789	-1.07	2150	85618					
386	2.388	.65	0841	.73290					
407	-2.148	61	.0502	65934					
411	-2.188	81	1394	67154					
421	-2.045	54	.0833	62772					
431	-2.472	82	0643	75895					
439	-3.092	85	.1041	94922					
440	-3.290	95	.0624	-1.00982					
463	-3.756	-1.15	.0055	-1.15286					
482	3.476	1.07	.0025	1.06707					
505	-3.223	-1.12	1284	98938					
539	3.416	1.18	.1300	1.04877					
589	2.042	.46	1671	.62679					
630	-2.119	63	.0169	65047					
635	-2.661	88	0625	81672					
639	-2.743	85	0037	84210					
640	2.024	.56	0629	.62135					

Casewise Diagnostics^a

a. Dependent Variable: Aggression

Based on the final model (which is actually all we're interested in) the following variables predict aggression:

- Parenting style (b = 0.062, $\beta = 0.194$, t = 4.93, p < .001) significantly predicted aggression. The beta value indicates that as parenting increases (i.e. as bad practices increase), aggression increases also.
- Sibling aggression (b = 0.086, $\beta = 0.088$, t = 2.26, p < .05) significantly predicted aggression. The beta value indicates that as sibling aggression increases (became more aggressive), aggression increases also.
- Computer games (b = 0.143, $\beta = 0.037$, t = 3.89, p < .001) significantly predicted aggression. The beta value indicates that as the time spent playing computer games increases, aggression increases also.
- E-numbers (b = -.112, $\beta = -0.118$, t = -2.95, p < .01) significantly predicted aggression. The beta value indicates that as the diet improved, aggression decreased.

The only factor not to predict aggression was:

✓ Television (*b* if entered = .032, t = 0.72, p > .05) did not significantly predict aggression.

Based on the standardized beta values, the most substantive predictor of aggression was actually parenting style, followed by computer games, diet and then sibling aggression.

 R^2 is the squared correlation between the observed values of aggression and the values of aggression predicted by the model. The values in this output tell us that sibling aggression and parenting style in combination explain 5.3% of the variance in aggression. When computer game use is factored in as well, 7% of variance in aggression is explained (i.e. an additional 1.7%). Finally, when diet is added to the model, 8.2% of the

variance in aggression is explained (an additional 1.2%). With all four of these predictors in the model still less than of the variance in aggression can be explained.

The Durbin–Watson statistic tests the assumption of 'independence of errors', which means that for any two observations (cases) in the regression, their residuals should be uncorrelated (or independent). In this output the Durbin–Watson statistic falls within the recommended boundaries of 1–3, which suggests that errors are reasonably independent.

The scatterplot helps us to assess both *homoscedasticity* and *independence of errors*. The scatterplot of ZPRED vs. ZRESID does show a random pattern and so indicates no violation of the independence of errors assumption. Also, the errors on the scatterplot do not funnel out, indicating homoscedascitity of errors, thus no violations of these assumptions.