a) Write a state equation for this system:

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = u$$

- b) Add a new state in which \dot{x}_3 =y-y_d where y_d is the unit step and represents the desired output of the system. Write the new state equations treating y_d as another input.
- c) Now, pick a vector $k=[k_1,k_2,k_3]$ such that if u=-kx, the new state will have roots of the characteristic equation at -2, -3, and -4
- d) Simulate the system and observe the output y and compare the response for y_d =step input to the step response of the system without control.

Helpful notes:

- a) Use state variables $x_1=y$ and $x_2=\dot{x}_1$. You can then write down the state equation as: $\dot{x}=Ax+Bx$ A is a 2x2 matrix, $x \& \dot{x}$ are 2x1, and B is 2x1 with (u) as the scalar input.
- b) The part expresses the integrated difference of output y and desired output y_d . this is expressed as $\dot{x}_3 = y y_d$. since $x_1 = y$, the equation will look like: $\dot{x}_3 = x_1 y_d$. and if this is included in the state equation form problem a), we get a 3x3 matrix (A) and 3x2 matrix (B) relating derivatives to the state variables to input, u and y_d . The matrix will look like:

$$\dot{x} = Ax + Bu$$

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} \begin{pmatrix} u \\ y_d \end{pmatrix}$$

We need to find the values of the a's and b's.

c) The goal is to create a controller with a desired response by replacing the input u by $-\mathbf{k}\mathbf{x}$ where \mathbf{k} is a row vector of constants and \mathbf{x} a column vector of states: $\vec{k} = \begin{pmatrix} x_1 \\ k_2 \end{pmatrix} \text{ and } \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

We must first substitute -kx for (u) in the equation $\dot{x} = Ax + Bu$ and we are asked to find the values of $k_{1,2&3}$ that make the characteristic equation for this system match a desired characteristic equation with roots -2,-3, and -4.

Given the roots the desired characteristic equation, we can write the characteristic equation as: (s+2)(s+3)(s+4) and expand this formal to get s^3+es^2+fs+g where we need to find the values of e, f & g.