FUNDAMENTAL MATHEMATICS

1) Determine whether the following sets are basis of \mathbb{R}^{3} or not.
i) $\{(2,1,-2),(-2,-1,2),(2,4,-4)\}$, ii) $\{(1,1,1),(1,5,6),(6,2,1)\}$.
2) Let V be the following subset of \mathbb{R}^{4}

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}-x_{2}+x_{3}-x_{4}=0\right\}
$$

Prove that V is a subspace of \mathbb{R}^{4}. Find a basis of V.
3) Let V_{1} and V_{2} be vector spaces. We let $V_{1} \oplus V_{2}$ be the vector space, which as a set is the set of all pairs $\left(v_{1}, v_{2}\right)$, where $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$. The addition and multiplication on a scalar is defined by

$$
\begin{gathered}
\left(v_{1}, v_{2}\right)+\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\left(v_{1}+v_{1}^{\prime}, v_{2}+v_{2}^{\prime}\right), \\
\lambda\left(v_{1}, v_{2}\right)=\left(\lambda v_{1}, \lambda v_{2}\right) .
\end{gathered}
$$

Prove that $\operatorname{dim}\left(V_{1} \oplus V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)$.
Hint. You can take bases of V_{1} and V_{2} and try to construct a basis of $V_{1} \oplus V_{2}$. Alternatively, you can apply the rank-nullity theorem to the linear map $p: V_{1} \oplus V_{2} \rightarrow V_{2}$, given by $p\left(v_{1}, v_{2}\right)=v_{2}$.
4) Let U and W be subspaces of a vector space V. Prove that

$$
\operatorname{dim}(U+W)=\operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)
$$

Hint. Consider the linear map $f: U \oplus W \rightarrow V$, given by $f(u, w)=u-w$, where $U \oplus W$ is the same as in the previous problem. Now use the result of the previous problem and the rank-nullity theorem applied on f.
5) Let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear map given by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}, x_{1}-x_{2}, x_{2}+x_{3}\right)
$$

Find the matrix corresponding to f in the basis $\{(1,1,0),(-1,1,0),(1,1,1)\}$.

