Consider the simple linear regression model $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i (i = 1, 2,, n)$. The model may be written in matrix notation as $Y = X\beta + \varepsilon$.

- (a) Explain the terms Y, X, β and ε
- (b) State the second-order distributional assumptions in matrix notation and then the normal theory assumptions using matrix notations
- (c) Write the elements of X'X and X'Y
- (d) Show that the error sum of squares may be written as $(Y-X\beta)'(Y-X\beta)$
- (e) The least squares estimate $\hat{\beta}$ of β minimize $(Y X\beta)'(Y X\beta)$. State the normal equations (least squares equations) in matrix form.
- (f)Assuming that X (and hence XX) is of full rank, obtain $\hat{\beta}$ using (e).
- (g) Show that $\hat{\beta}$ is an unbiased estimator of β .
- (h) Derive $Cov(\hat{\beta})$, the variance-covariance matrix of $\hat{\beta}$.
- (i) What is the Maximum Likelihood Estimate of β when normality assumptions are made?
- (j) Show that the vector of fitted values $\,\hat{Y}\,$ may be written as

$$\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$$
 where $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.

- (k) Show that the matrix Hdefined above is a symmetric idempotent matrix.
- (1) Show that $tr(\mathbf{H}) = 2$.
- (m) The residual vector $\underbrace{is.}_{} e = Y \hat{Y}$. Show that e = (I H) Y .
- (n) Show that the n x n matrix (I-H) is symmetric and idempotent with tr(I-H) = n 2.
- (o) Show that the Residual Sum of Squares SSE may be written as SSE = Y'(I H)Y.
- (p) The Total (corrected) Sum of Squares is defined as SSTO = $\sum_{i=1}^{n} Y_i^2 \left[\left(\sum_{i=1}^{n} Y_i\right)^2 / n\right]$.

Show that SSTO = $Y'[I - (\frac{1}{n})J]Y$ where **J** is the matrix with all elements equal to 1.

(q) Show that the Regression Sum of Squares may be written as $SSR = Y'[H - (\frac{1}{n})J]Y$