1. Suppose f and g are in $L^{2}((0,2 \pi))$ and are periodic of period 2π and let $S[f]=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}$ and let $S[g]=\sum_{k=-\infty}^{\infty} d_{k} e^{i k x}$. We define the convolution of f and g by

$$
f * g(x)=\frac{1}{2 \pi} \int_{(0,2 \pi)} f(x-t) g(t) d t
$$

Show that $S[f * g]=\sum_{k=-\infty}^{\infty} c_{k} d_{k} e^{i k x}$ and show that $f * g(x)=\sum_{k=-\infty}^{\infty} c_{k} d_{k} e^{i k x}$ where the series converges in $L^{2}((0,2 \pi))$.
2. Let $f(x)=\frac{1}{2}(\pi-x)$ for $0<x<2 \pi$ and assume that f is periodic of period 2π. Find the Fourier series for f and show that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Use the previous problem to find the value of the series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}
$$

