1) Compute the Cayley tables for the additive group \mathbb{Z}_{7} and for the multiplicative group \mathbb{Z}_{7}^{*} of non-zero elements in \mathbb{Z}_{7}.
2) Let G be a group written additively. Recall that the order of an element a is the minimal natural number n such that $n a=0$. If such n does not exits then one says that the order of a is infinity.
i) Find the order of the following elements $2,3,5,6 \in \mathbb{Z}_{12}$.
ii) If G is a group written multiplicatively, the order of an element a is the minimal natural number n such that $a^{n}=1$. Find the order of the elements $2, \frac{1}{2},-1, i \in \mathbf{C}^{*}$, where \mathbf{C}^{*} is the multiplicative group of non-zero complex numbers.
iii) Find the order of the following elements $2,3,5,6 \in \mathbb{Z}_{7}^{*}$, where Z_{7}^{*} is the multiplicative group of non-zero elements in \mathbb{Z}_{7}.
3) i) Let G be a group written additively. An element a of a group G is called a generator if any element $x \in G$ has the form $x=n a$ for some integer n. For example -1 and 1 are generators of \mathbb{Z}, while \mathbf{Q} has no generators at all. Find all generators of the group \mathbb{Z}_{12}.
ii) In multiplicative notation, an element a of a group G is called a generator if any element of G can be written as a power of a. Carl Friedrich Gauss proved that for any prime p the group \mathbb{Z}_{p}^{*} has a generator. Verify this statement for all primes ≤ 17 giving explicitly a generator of the group \mathbb{Z}_{p}^{*} in each case.

Remark. Can you see any regularity among these generators for different primes? Probably not. A conjecture of Artin (which is still open) claims that if a is an integer which is not a perfect square there are infinitely many primes p for which a is a generator in \mathbb{Z}_{p}^{*}.
4) i) Let G be a group written multiplicatively. For any element $a \in G$, consider the map $f_{a}: G \rightarrow G$ given by $f_{a}(x)=a x$. Prove that f_{a} is always a bijection.
ii) Let $G=\mathbb{Z}_{p}^{*}$ be the multiplicative group of the non-zero elements in the field \mathbb{Z}_{p}. For any integer a, which is not divisible by p, the bijection $f_{\bar{a}}: \mathbb{Z}_{p}^{*} \rightarrow \mathbb{Z}_{p}^{*}$ can be considered as a permutation and hence as an element of S_{p}. The sign of this permutation is denoted by $\left(\frac{a}{p}\right)$ and is called Legendre symbol. Here \bar{a} denotes the class of a modulo p. For example if $p=5$ and $a=23$, then $\bar{a}=3$ and the corresponding permutation is

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 4 & 2
\end{array}\right)=(1423)
$$

This is because $f_{3}(x)=3 x$, so $f_{3}(1)=3, f_{3}(2)=6=1$ in \mathbb{Z}_{5} etc. Hence $\left(\frac{23}{5}\right)=-1$. One of the most famous results of Carl Friedrich Gauss claims that for any odd primes p and q one has

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

Verify the theorem for $p=7$ and $q=11$.

