9) When pressure is applied to a liquid, its volume decreases. Assuming that the isothermal compressibility $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$

is independent of pressure, derive an expression for the volume as a function of pressure.

- - $[V(p) = V(p_0) \exp \{-\kappa_T (p p_0)\}].$

(ii) for a gas for which $p(V_m - b) = RT$. $\left[\alpha = \frac{1}{T}\left(1 - \frac{b}{V_m}\right); \kappa_T = \frac{1}{p}\left(1 - \frac{b}{V_m}\right)\right]$.

10) Calculate α and κ_T

(i) for an ideal gas. $\alpha = 1/T$; $\kappa_T = 1/p$.