Ito's Lemma

Recall that a Wiener process $d W$ is normalized to have expectation $E\left(d W^{2}\right)=d t$.
(1)

A specialized form of Ito's lemma can be found for instance on web page
http://en.wikipedia.org/wiki/It\�\�'s_lemma
If we take the first two equations from this web page and change variables to those of the assignment,

$$
\begin{equation*}
d S=a(S, t) d t+b(S, t) d X \tag{1.1}
\end{equation*}
$$

and collect together the terms containing $\partial f / \partial S$, we obtain exactly the requested statement

$$
\begin{equation*}
d f=\frac{\partial f}{\partial S} d S+\left(\frac{\partial f}{\partial t}+\frac{1}{2} b^{2} \frac{\partial^{2} f}{\partial S^{2}}\right) d t \tag{1.2}
\end{equation*}
$$

An informal proof of equation (1.2) is further given on that web page. The key element of the informal proof, in our notations here, is the replacement

$$
\begin{equation*}
d X^{2} \rightarrow E\left(d X^{2}\right)=d t \tag{1.3}
\end{equation*}
$$

in the limit $d t \rightarrow 0$, whose proof is too involved to be explained in a basic text.

The rest of the informal proof there consists of simple algebraic book-keeping. The same book-keeping is done in our notations here in the next question.
(2)

If

$$
\begin{equation*}
d S=\mu S d t+\sigma S d X \tag{2.1}
\end{equation*}
$$

$\mu \geq 0, \sigma>0, d X$ is a Wiener process, $P_{m}>0$, and

$$
\begin{equation*}
\xi=\frac{S}{S+P_{m}}=1-\frac{P_{m}}{S+P_{m}} \tag{2.2}
\end{equation*}
$$

we use Taylor expansion and obtain

$$
\begin{align*}
d \xi= & \frac{P_{m}}{\left(S+P_{m}\right)^{2}} d S-\frac{P_{m}}{\left(S+P_{m}\right)^{3}} d S^{2}+O\left(d S^{3}\right)= \\
& =\frac{(1-\xi)^{2}}{P_{m}} d S-\frac{(1-\xi)^{3}}{P_{m}^{2}} d S^{2}+O\left(d S^{3}\right) \tag{2.3}
\end{align*}
$$

In the same way as it is done for question (1) in the cited web page, we expand

$$
\begin{equation*}
d S^{2}=\mu^{2} S^{2} d t^{2}+2 \mu \sigma S^{2} d t d X+\sigma^{2} S^{2} d X^{2} \tag{2.4}
\end{equation*}
$$

make replacement (1.3) and note that the remaining terms in equation (2.2) are of higher order than $d t$ and so can be dropped, so that

$$
\begin{equation*}
d S^{2}=\sigma^{2} S^{2} d t+o(d t) \tag{2.5}
\end{equation*}
$$

Using equations (2.1) and (2.5) and retaining only the expansion terms up to the order of $d t$ in equation (2.3), we obtain

$$
\begin{equation*}
d \xi=\frac{(1-\xi)^{2}}{P_{m}}(\mu S d t+\sigma S d X)-\frac{(1-\xi)^{3}}{P_{m}^{2}} \sigma^{2} S^{2} d t \tag{2.6}
\end{equation*}
$$

Noting from equation (2.2) that

$$
\begin{equation*}
S=\frac{P_{m} \xi}{1-\xi} \tag{2.7}
\end{equation*}
$$

and substituting equation (2.7) into equation (2.6), we obtain

$$
\begin{gather*}
d \xi=(1-\xi) \xi(\mu d t+\sigma d X)-\sigma^{2}(1-\xi) \xi^{2} d t= \\
=\xi(1-\xi)\left(\mu-\sigma^{2} \xi\right) d t+\sigma \xi(1-\xi) d X \\
=a(\xi) d t+b(\xi) d X \tag{2.8}
\end{gather*}
$$

where

$$
\begin{align*}
a(\xi) & =\xi(1-\xi)\left(\mu-\sigma^{2} \xi\right) \\
b(\xi) & =\sigma \xi(1-\xi) \tag{2.9}
\end{align*}
$$

From equation (2.9) we see that $a(\xi)$ and $b(\xi)$ do indeed have the properties

$$
\begin{equation*}
a(0)=a(1)=b(0)=b(1)=0 \tag{2.10}
\end{equation*}
$$

