Share
Explore BrainMass

# Chi-square test

Also find the tables attached.

Answer 2: I understand you want help only on Questions 2 and 3. I will provide the solution but know that you need help on the other parts including question 1.

Solution:
Expected Freq = n*p(since we are dealing with a binomial distribution). The probability is 1/5 for all options.
Thus,

Observed Freq.
Table 1 Table 2
Position IE Firefox Opera Chrome Safari Position IE Firefox Opera Chrome Safari
1 1304 2099 2132 2595 1870 1 2494 2489 1612 947 2458
2 1325 2161 2036 2565 1913 2 2892 2820 1909 1111 1268
3 1105 2244 1374 3679 1598 3 2398 2435 2643 1891 633
4 1232 2248 1916 590 4014 4 1628 1638 2632 3779 323
5 5034 1248 2541 571 605 5 588 618 1204 2272 5318

Probabilities

Table 1 Table 2
Position IE Firefox Opera Chrome Safari Position IE Firefox Opera Chrome Safari
1 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2 0.2
2 0.2 0.2 0.2 0.2 0.2 2 0.2 0.2 0.2 0.2 0.2
3 0.2 0.2 0.2 0.2 0.2 3 0.2 0.2 0.2 0.2 0.2
4 0.2 0.2 0.2 0.2 0.2 4 0.2 0.2 0.2 0.2 0.2
5 0.2 0.2 0.2 0.2 0.2 5 0.2 0.2 0.2 0.2 0.2

#### Solution Preview

Also find the tables attached.

Answer 2: I understand you want help only on Questions 2 and 3. I will provide the solution but know that you need help on the other parts including question 1.

Solution:
Expected Freq = n*p(since we are dealing with a binomial distribution). The probability is 1/5 for all options.
Thus,

Observed Freq.
Table 1 Table ...

#### Solution Summary

Also find the tables attached.

Answer 2: I understand you want help only on Questions 2 and 3. I will provide the solution but know that you need help on the other parts including question 1.

Solution:
Expected Freq = n*p(since we are dealing with a binomial distribution). The probability is 1/5 for all options.
Thus,

Observed Freq.
Table 1 Table 2
Position IE Firefox Opera Chrome Safari Position IE Firefox Opera Chrome Safari
1 1304 2099 2132 2595 1870 1 2494 2489 1612 947 2458
2 1325 2161 2036 2565 1913 2 2892 2820 1909 1111 1268
3 1105 2244 1374 3679 1598 3 2398 2435 2643 1891 633
4 1232 2248 1916 590 4014 4 1628 1638 2632 3779 323
5 5034 1248 2541 571 605 5 588 618 1204 2272 5318

Probabilities

Table 1 Table 2
Position IE Firefox Opera Chrome Safari Position IE Firefox Opera Chrome Safari
1 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2 0.2
2 0.2 0.2 0.2 0.2 0.2 2 0.2 0.2 0.2 0.2 0.2
3 0.2 0.2 0.2 0.2 0.2 3 0.2 0.2 0.2 0.2 0.2
4 0.2 0.2 0.2 0.2 0.2 4 0.2 0.2 0.2 0.2 0.2
5 0.2 0.2 0.2 0.2 0.2 5 0.2 0.2 0.2 0.2 0.2

\$2.19