Purchase Solution

Curves in euclidean 3-space

Not what you're looking for?

Ask Custom Question

In Euclidean three-space, let p be the point with coordinates (x,y,z) = (1,0,-1). Consider the following curves that pass through p:

Curve 1: xi (λ) = (λ, (λ-1)2, - λ)

Curve 2: xi (μ) = (cos μ , sin μ, μ-1)

Curve 3: xi (σ) = (σ2, σ3 + σ2, σ)

The curves are parametrized by the parameters that vary, at least in principle,
from -∞ to +∞

(a) Calculate the components of the tangent vectors to these curves at p in the coordinate basis {∂x , ∂y , ∂z}

(b) Let a particular function f be defined on this 3-space, f = x2 + y2 - yz.

Calculate the function's rate of change as it varies along each of these curves,

i.e., find df/dλ, df/dμ, df/dσ

Attachments
Purchase this Solution

Solution Summary

The function's rate of change as it varies along each of the curves is calculated. Particular functions in three-space is determined. Tangent vectors are analyzed.

Solution Preview

To find the tangent vector you just differentiate the components of the vector w.r.t. the parameter and then normalize the result. Let's denote the position vector by V. Then if:

V = [lambda, (lambda-1)^2, - lambda]

dV/dlambda = [1, 2(lambda-1), - 1]

at point P the parameter lambda = 1, so the derivative there is [1, 0, - 1]. The tangent vector is obtained by normalizing this to 1: 1/sqrt(2) [1, 0, - 1]

Next case:

V = [cos(mu), sin(mu), mu-1]

dV/d mu = [-sin(mu), cos(mu), 1]

At P the parameter mu = 0, so there the derivative is [0,1,1] and the ...

Purchase this Solution


Free BrainMass Quizzes
Basic Physics

This quiz will test your knowledge about basic Physics.

Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.

Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

The Moon

Test your knowledge of moon phases and movement.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.