Explore BrainMass

# Relativistic Energy

While length decreases between two points at high speeds, the mass of an object will increase. This has a significant effect on what the object is capable of doing. Einsteinâ€™s famous relationship for energy is: E=mc^2 This includes both the kinetic energy and rest mass energy for a particle. The kinetic energy of a high speed particle can be calculated from: KE=mc^2-m_0 c^2 The relativistic energy of particle can also be expressed in terms of its momentum in the expression E=mc^2= âˆš(p^2 c^2+ m_0^2 c^4 ) The relativistic energy expression is what is used to calculate binding energies of nuclei and the energy yields of nuclear fission and fusion. Â© BrainMass Inc. brainmass.com June 20, 2021, 3:50 am ad1c9bdddf

### Find the maximum energy of alpha particles emitted by accelerated beam of Po-210

The alpha decay of Po-210 to Pb-206 releases approximately 5.4 MeV of energy, of which 5.3 MeV is the kinetic energy of the alpha particle and 0.1 MeV is the recoil energy of Pb-206. Suppose that we have a beam of Po-210 ions with a kinetic energy of 100 TeV incident on a target. Occasionally a Po-210 ion will decay and emit an

### De-Broglie relations to compute the wavelengths and frequencies

Please show set and calculations. 1. Wave-particle duality Use the de-Broglie relations to compute the wavelengths and frequencies associated with (a) a photon with energy of 1keV (b) a ball of mass 10g moving with speed 10m/s (c) a neutron with a kinetic energy of 0.05eV.

### Atomic and Nuclear Physics: Kinetic energy of electron, momentum of proton

An electron and a proton are each accelerated through a potential difference of 10.0 million volts. a) What is the kinetic energy of the electron? What is the kinetic energy of the proton? b) Calculate the momentum (MeV/c) of the proton using classical equations. c) Calculate the momentum (MeV/c) of the proton using relati

### Final parameters of proton under constant acceleration

A proton (m=1.67*10^-27kg) is being accelerated along a straight line at 3.6*10^5 m/sec ^2 in a machine. If the proton has an inital speed of 2.4*10^7 m/sec: What is the final velocity after traveling for 2 sec? What is the force acting on the proton? What is the increase in its kinectic energy?

### Accelerating an Electron Between Two Parallel Plates

An electron (mass m = 9.11E-31 kg) is accelerated in the uniform field E (E = 1.64E+4 N/C) between two parallel charged plates. The separation of the plates is 1.33 cm. The electron is accelerated from rest near the negative plate and passes through a tiny hole in the positive plate, as seen in the figure above. With what speed

### Kinetic Energy of a Moving Object

The kinetic Energy (K) of a moving object varies jointly with its mass (m) and the square of its velocity (v). If an object weighing 90 kilograms and moving with a velocity of 20 meters per second has a kinetic energy of 4500 Joules, find its kinetic energy when the velocity is 32 meters per second.

### Acceleration of an electron in an electric field

Given: The charge on the electron is qe = 1.60218 *10 ^-19 C. Given: The mass of the electron is me = 9.10939 * 10 ^-31 kg. What is an electron's momentum, if it is accelerated across a 6 mm potential difference 15.6 mV?

### Relativistic Velocity and Kinetic Energy

Take the mass of a proton to be 1GeV (=1000MeV). Find the velocity (beta) of a proton whose kinetic energy is: 100 MeV 2 GeV 10 GeV 100 GeV According to Newtonian theory, the kinetic energy (mv^2/2) of a particle is c is equal to mc^2/2, which we now recognize as half of its rest energy. What is the actual (relativistic

### Rest Mass and Kinetic Energy

1. Can you express the rest mass of the electron in electron volts. 2. Compute the kinetic energy of a.) an electron b.) a proton traveling at .99c. 3. At what velocity (beta) does the kinetic energy of an electron equal its rest energy?

### Relativistic Energy

What must be the momentum of a particle with mass "m" so that the total energy of the particle is exactly 3 times its rest energy? The answer must be in terms of mc. Possible answers: a.) 3.45 mc b.) 2.83 mc c.) 5.17 mc d.) 0.045mc e.) 6.66 mc.

### What Kinetic Energy Must this Beam Proton Have?

In the Tevatron accelerator/storage ring at the Fermi National Accelerator Laboratory, two beams of protons travel in opposite directions each with a total energy of 1 TeV and interact. Since these beams have momenta of equal magnitude but opposite direction, they interact in their center of momentum inertial frame. Hence s2 =

### Equipartition theorem for the (relativistic) case E = c|q|

Consider a classical "degree of freedom" that is linear rather than quadratic: E = c|q| for some constant c. (An example would be the kinetic energy of a highly relativistic particle in one dimension, written in terms of its momentum.) Repeat the derivation of the equipartition theorem for this system, and show that the average

### Relativistic Collision

This is problem 12.34 from Griffiths' third edition of Electrodynamics: In the past, most experiments in particle physics involved stationary targets: one particle (usually a proton or an electron) was accelerated to a high energy E, and collided with a target particle at rest (Fig12.29a). Far higher relative energies are o

### Calculating increase in mass of compressed spring

A spring with a force constant of 544 N/m is compressed a distance of 38cm. Find the resulting increase in the spring's mass. Answer provided is 4.4 x 10^-16 kg.

### Energy of a speeding proton

Please see the attached file for the problem description.

### Momentum and Relativistic Energy

See the attached file. Relativistic Energy and Momentum Learning Goal: To learn to calculate energy and momentum for relativistic particles and, from the relativistic equations, to find relations between a particle's energy and its momentum through its mass. The relativistic momentum and energy E of a particle with mass m

### Modern Physics: Photoelecric effect and Compton scattering

1) plancks constant and work function 2) photon energy, electron kinetic, direction

### Speed of an Electron whose Kinetic Energy is Twice as Large

Calculate the speed of an electron ehose kinetic energy is twice as large as its rest mass energy. Express V in C ( light speed). (Relativistic kinetic energy) P.S. Please help me with this as detailed as possible so I can understand the entire process. Thank you.

### Find the minimum kinetic energy of a proton.

(a) Show that the kinetic energy of a nonrelativistic particle can be written in terms of its momentum as KE = P2 (squared)/2m. (b) Use the results of (a) to find the minimum kinetic energy of a proton confined within a nucleus having a diameter of 1.0 x 10-15 m.