Purchase Solution

Magnetic energy of solar flare

Not what you're looking for?

Ask Custom Question

The problem reads as:
"The magnetic field permeating a region of space represents stored energy. This energy is often quantified in terms of its density (magnetic energy per unit volume) given by B^2/(2*u) where u=4*pi X 10^(-7). Suppose an "X2" flare occurs within a volume of 10^12 km3 over a sunspot pair initially permeated by an average magnetic field strength of 1000 Gauss. Calculate the total magnetic energy in Joules stored in the volume before the flare occurs. "

My dilemma.....I know that the given formula for magnetic pressure is a simplified version of the entire magnetic momentum flux relationship. But how can I use what is given? (a relationship in terms of density seems to continually yield a result of Newtons/meter2 which I understand to be magnetic pressure? I have resorted to blindly "plugging and chugging" in a an effort simply to get the right units. I assume that I should be able to take 1000 gauss over the given volume with the given mag pressure relationship and somehow attain an initial energy.

Thanks for any insight you might provide.

Purchase this Solution

Solution Summary

The magnetic energy of solar flares are determined. Momentum flux relationship formulas are analyzed.

Solution Preview

We must express both B and the vacuum permeability µ_0 in the same units - apparently SI, ...

Purchase this Solution


Free BrainMass Quizzes
The Moon

Test your knowledge of moon phases and movement.

Basic Physics

This quiz will test your knowledge about basic Physics.

Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.

Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.