Purchase Solution

Velocities, distances by Law of conservation of Energy.

Not what you're looking for?

Ask Custom Question

Q. Bouncing a ball:
Let g be the acceleration of gravity near the Earth's surface. The acceleration of gravity near the surface of the Moon is (approximately) g/6. Using the law of conservation of energy, i.e. the principle of conservation of energy, solve the following.

(a) Suppose that a ball is dropped from 9 feet above the Earth.
Taking g = 32 feet/second square, at what speed is the ball traveling as it reaches the Earth?
(b) Suppose that a ball is drpped from 9 feet above the Moon. At what speed is the ball traveling as it reaches the Moon?
(c) Suppose that a ball dropped from height he above the Earth's surface strikes the ground with the same speed as a ball dropped from a height hm above the Moon's surface. Calculate hm/he.

Purchase this Solution

Solution Summary

The velocities and distances by law of conservation of energy is determined. The acceleration of gravity near the surface are determined.

Solution Preview

Please see the solution in the attached word file 'Solution_Bouncing_ball_01_by_EnergyConservation.doc'

The soliution of this problem is very simple. Throughout, you have to note that total energy of the ball ...

Purchase this Solution


Free BrainMass Quizzes
The Moon

Test your knowledge of moon phases and movement.

Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

Basic Physics

This quiz will test your knowledge about basic Physics.

Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.