Purchase Solution

Problems Pertaining to Group Rings

Not what you're looking for?

Ask Custom Question

See problem attached.

Attachments
Purchase this Solution

Solution Summary

The solution solves several problems pertaining to group rings, i.e. rings formed by multiplying group elements by elements of a fixed ring.

Solution Preview

a. Let G = {e, a} where a^2 = e. Clearly G is isomorphic to Z_2. We claim that the quotient ring
S = Z[X]/(2, X^2 - 1) is isomorphic to R[G]. To see this, consider the map phi: R[G] -> S which satisfies phi(0) = 0, phi(e) = 1, phi(a) = X and phi(a + e) = 1 + X. Clearly phi is a set isomorphism, so we merely need to show that it is a ring homomorphism, i.e.

(i) phi(s_1 + s_2) = phi(s_1) + phi(s_2)
(ii) phi(s_1 s_2) = phi(s_1) phi(s_2)

for all elements s_1 and s_2 of S.

Consider Equation (i) first. There are 16 cases we need to check. Equation (i) clearly holds when either s_1 or s_2 are equal to zero since phi(0) = 0. There are 9 cases left to consider. Since g + g = 2g = 0 for all g in G, we see that phi(g + g) = phi(0) = 0 = 2 phi(g) = phi(g) + phi(g). This eliminates 3 of the 9 possibilities, so we have 6 cases left. We also note that both R[G] and S are commutative with respect to addition, so this narrows down the number of cases to just 3. We check these cases by hand. We have

phi(a + e) = 1 + X ...

Purchase this Solution


Free BrainMass Quizzes
Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Probability Quiz

Some questions on probability

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.