Purchase Solution

Homomorphisms and Surjections

Not what you're looking for?

Ask Custom Question

Let f:G->H be a group homomorphism.
Prove or disprove the following statement.

1.Let a be an element of G. If f(a) is of finite order, then a is also of finite order.

2.Let f be a surjection. Then f is an isomorphism iff the order of the element f(a) is equal to the order of the element a , for all a belong to G.

First, I want to know if f is the trivial homorphism, then both will fail, right?

Second, if f is non-trivial homomorphism. Both will hold, right?

Finally, Please help me to prove both or give me counterexamples without considering the trivial homomorphism.

Purchase this Solution

Solution Summary

Homomorphisms and surjections are investigated. The solution is detailed and well presented.

Solution Preview

1. False.
No matter f is a trivial or non-trivial group homomorphism, the statement is false. Here is a counter example. Let G=Z be the additive group of integers, H=Z2={0,1} is the additive group of Z mod 2. f:G->H is defined as f(a)=a mod 2 for all a in G. Then every nonzero element a in G has infinite order, but f(a) in H has order 0 or 1.

2. True.
No ...

Purchase this Solution


Free BrainMass Quizzes
Probability Quiz

Some questions on probability

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts