A parachutist and her parachute have a combined mass of 80 kg. She steps out from an aircraft travelling horizontally at 90m s−1 at a height of 300m above the ground, and falls for 5 seconds before instantaneously opening her parachute. In the free fall phase of the motion, take the origin of coordinates to be a point on the ground vertically below where the parachutist jumped from the aircraft. Model the parachutist as a particle, and ignore air resistance. You may assume that the velocity of the parachutist relative to the
Air-craft is initially zero.

I would like to know what a force diagram for the parachutist would look like with the corresponding unit vectors. Could you please clearly deﬁne a system of coordinates?

What would the initial position vector and velocity of the parachutist be in terms of these unit vectors?

How would I determine the diﬀerential equation of motion of the parachutist and then derive expressions for her velocity v(t) and position r(t).

How would I calculate the speed and the direction of the parachutist's motion with respect to the horizontal at the instant when the parachute opens, and what would be her vertical height at this instant?

If I was to redeﬁne the origin for the phase after the parachute has opened to be at the point on the ground vertically below that at which the parachute opens, and then model the parachutist and parachute as a sphere of eﬀective diameter 3m, what are the position, speed and direction of motion of the parachutist at the instant when the parachute opens in terms of the new coordinates? (Assuming that the quadratic model of air resistance applies in addition to the force due to gravity)

If you make use of any formulas could you clearly state them and why they may be used please

... Attached are formulas and diagrams to help clarify ... Please include them on the force diagram. ... 3. How do I express each of the forces acting on the particle as a ...

...Force diagram indicating force acting on P are shown ... Now we will express all the forces in terms of the given unit vector, explaining how we will. ...

... F about point P are zero as these forces pass through ... is also called taking moment of the force about the ... Multiple diagrams are present to illustrate concepts. ...

... At the point of impact the two position vectors must be ... The block is pulled by a 30 N-horizontal force as shown ... The forces diagram of the toboggan is given below ...

... constant velocity the resultant of all the forces must be ... In the ideal apparatus shown in the diagram, m1 = 2.0 kg ... acceleration is zero and hence net force on T ...

... reaction hence the wall will experience a force 18. ... As in the diagram, the tension in the vertical ... in different direction hence resolving the forces acting in ...

... labelled P. Use the information on the diagram to calculate ...vector B is perpendicular to the velocity vector v, then the magnitude of the force from the ...

... not sure how I would orient the diagram to get ... are perpendicular to the electric field, the vector equation above is ... This means that Lorentz force is now simply ...

(See attached file for full problem description with diagrams). ...Forces acting on the box are shown in the ... As angle θ increases, the frictional force acting on ...

... velocity is positive) we have for the average force: ... and draw an arrow representing the resultant (vector sum) of ... m/s. (Make this a clear diagram, with arrows ...