WeBWorK assignment three is due Thursday, February 1 at 9:00pm.

If you need help with the theory as you work through your assignment, your scheduled lab and the continuous tutorial (MS 365) are the best places to go.

It's a good idea to start working on your assignment early! Good Luck!!

1. (1 pt) The indefinite integral $\int(4 x+3) e^{2 x} d x$ can be evaluated using integration by parts.
If we let $u=4 x+3$, and $d v=e^{2 x} d x$, we find that $\mathrm{du}=$ \qquad $d x$ and $\mathrm{v}=$
The formula $\int u d v=u v-\int v d u$ then tells us that: $\int(4 x+3) e^{2 x} d x=$ \qquad $-\int$ \qquad $d x$.
Thus $\int(4 x+3) e^{2 x} d x=$ \qquad $+C$
2. (1 pt) Use integration by parts to evaluate the integral. (Hint: let $u=x$ and $v^{\prime}=e^{4 x}$)

$$
\begin{array}{r}
\int x e^{4 x} d x \\
+C
\end{array}
$$

3. (1 pt) Use integration by parts to evaluate the integral.

$$
\int 3 x \cos (3 x) d x
$$

4. (1 pt) Evaluate the indefinite integral.

$$
\int e^{4 x} \sin (6 x) d x
$$

$\longrightarrow+\mathrm{C}$
Hint: This is similar to Example 4 of Section 6.1 in the book.
5. (1 pt) Evaluate the definite integral.

$$
\int_{1}^{4} t^{4} \ln (3 t) d t
$$

6. (1 pt) First make a substitution and then use integration by parts to evaluate the integral.

$$
\begin{array}{r}
\int x^{9} \cos \left(x^{5}\right) d x \\
+C
\end{array}
$$

7. $(1 \mathrm{pt})$ Use integration by parts to evaluate the integral.

$$
\int 27 x^{2} \cos (3 x) d x
$$

8. (1 pt) Evaluate the definite integral.

$$
\int_{0}^{5} \sin ^{2}(7 x) \cos ^{2}(7 x) d x
$$

HINT: you will need to use some trig identities. The double angle formulas for sine and cosine: $\sin (2 t)=2 \sin (t) \cos (t)$ and $\cos (2 t)=1-2(\sin (t))^{2}$ or $\cos (2 t)=2(\cos (t))^{2}-1$ will be very useful. For example, $\sin (7 x) \cos (7 x)=(1 / 2) \sin (14 x)$.
A simple substitution won't work!
9. (1 pt) Evaluate the definite integral.

$$
\int_{0}^{\pi / 2} \sin ^{5} x \cos ^{10} x d x
$$

10. (1 pt) Evaluate the definite integral.

$$
\int_{0}^{\frac{\pi}{39}} \frac{\sec ^{12}(13 x)}{\cot (13 x)} d x
$$

