3. In lecture we found explicitly a matrix which would transform the components of a vector in three dimensional space from an initial frame of reference to a rotated frame specified by the pseudo-Euler angles.
a) Substitute to find the transformation if $\varphi=\frac{\pi}{2}, \theta=\frac{\pi}{4}$, and $\psi=\frac{\pi}{2}$
b) Substitute to find the transformation if $\varphi=\frac{\pi}{4}, \theta=\frac{\pi}{2}$, and $\psi=\frac{\pi}{2}$
c) If the components of a vector V are as a column matrix

$$
\mathrm{V}=\left(\begin{array}{l}
1 \\
4 \\
6
\end{array}\right)
$$

find the transformed components for each transformation (a) and (b) and for each case show that $\widetilde{V}^{\prime} V^{\prime}=\widetilde{V} V$
4. S is an inertial frame with time and coordinates $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ in which the air is at rest. S^{\prime} is an inertial frame with time and coordinates $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ which are aligned with the coordinates in S and arranged so that the origins coincide at $t=t^{\prime}=0$. S^{\prime} moves with a velocity u in the x direction. A warning horn at the origin of S and at rest in S sounds a short burst at $t=0$. If the sound moves with speed v in the air, then the locus of points at which listeners in S hear the sound at t is given by the equation

$$
0=(\mathrm{vt})^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}-\mathrm{z}^{2}
$$

which is a sphere about the origin. If some listeners are at rest in the S ' frame, perform a Galilean transformation to find the locus of points in terms of $x^{\prime}, y^{\prime}, z^{\prime}$ at which they will hear the horn at time t '.

