1. Two masses are released at the same height, and fall a very long distance under gravity, till they hit the ground. The masses are subject to air friction, which you should assume has the form -b $\begin{gathered}\text { for both masses, even if this mathematical form is not very accurate. Mass } \mathrm{A} \text { is }\end{gathered}$ made of lead. Mass B is made of a much less dense plastic. Both masses have the same size and shape, and therefore have the same friction coefficient b. Which one reaches the ground first?
(A) They both reach the ground at the same time.
(B) Mass B reaches the ground first.
(C) Mass A reaches the ground first.
2. A mass is thrown upwards on the earth, with an initial velocity v_{o}. It reaches some maximum height h_{e}. (Ignore air friction.) The experiment is repeated on the Moon with the same mass and the same v_{0}, and the mass reaches a different height h_{m}, because the acceleration of gravity on the Moon is $\sim 1 / 6$ that on the earth. In these two experiments, the potential energy at the maximum height is, respectively, U_{e} and U_{m}. What is the relationship between U_{e} and U_{m} ?
(A) $U_{e}=U_{m}$
(B) $U_{e}=\sqrt{3} U_{m}$
(C) $U_{e}=6 U_{m}$
(D) $U_{e}=\frac{1}{\sqrt{6}} U_{m}$
(E) $U_{e}=\frac{1}{6} U_{m}$
(F) $U_{e}=36 U_{m}$
3. A 1 kg projectile is fired (on Earth) with a speed of $10 \mathrm{~m} / \mathrm{s}$, at an angle 60° above the horizontal. It is subject to gravity, but not friction. Which of the following is the best estimate of its speed when it reaches a point 3 meters higher than the initial position?
A) $8.5 \mathrm{~m} / \mathrm{s}$
B) $6.3 \mathrm{~m} / \mathrm{s}$
C) $2.0 \mathrm{~m} / \mathrm{s}$
D) $1.1 \mathrm{~m} / \mathrm{s}$
