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Example 7.2 The coefficient of sliding friction between collar B and its guide is g,
but friction between collar A and the horizontal guide bar is negligible. The spring,
whose stiffness is K, is unstretched when ¢ =0, and the mass of the bar is 7. Deter-
mine the equations of motion of the system.

Example 7.2

Solution The position of the bar is fully specified by the angle ¢, sO this is

a holonomic system with one degree of freedom. However, two features suggest that
we should employ two generalized coordinates. The first results from the observation
that a virtual movement of the bar in which only ¢ is incremented will not violatehe
constraint that end B cannot move transversely to the incline. Hence, if we employ
only g, = ¢; the friction force, but not the reaction, at end B will appear in the genet:
alized force. Because the magnitude of the friction force is p| Nj|, we would find that
the single equation of motion would contain two unknowns: ¢ and |Ng|. We willsee
that selecting two generalized coordinates will lead to a solvable set of equations:

The second reason for employing two generalized coordinates is refevant ot
frictionless case also. Formulating Lagrange’s equations using only ;=9 wous
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Free-body diagram and constrained generalized coordinates.

require that we express the velocity of the center of mass solely in terms of ¢ and ¢.
Obtaining such an expression is complicated by the fact that the guidebars are not
mutually orthogonal. It is substantiaily simpler to carry out the kinematical analysis
of this system by using two position variables whose relationship is described by an
additional constraint equation.

For both reasons, we select as generalized coordinates the angle of orientation
and the absolute position of collar 4 along its guide, g; = ¢, g = X,. In order to
derive the constraint equation, we first express the velocity of end B in terms of ¢
and X,. Thus,

g = Pt @ X Py = Xal+(—$K) x[—(L cos I+ (Lsing)J]
= (Xy+ L sing)T+(L cos $)J.

The requirement that 9p be parallel to the incline corresponds to the condition vg-é, =
0, where &, is the normal to the incline,

&, = (sin )]+ (cos B)J.
Substitution of these expressions for ¥z and &, leads to the following constraint
equation:

Lécos(B—¢)+X,sinf=0. 1)

In the present situation, where the friction force depends on the normal force, we

require equations in which the normal force occurs explicitly. For this reason, we |
include the normal force in the evaluation of the virtual work, rather than using a
Lagrange multiplier to account for it. Note that the expression for ¥ is independent
of time. Hence, the virtual displacement of end B may be described by forming vp dt,
and then replacing differentials by virtual increments. This yields

8Fp = (0.X4+ L 8¢ sin )] + (L 8¢ cos )J.

The spring and gravity forces are conservative, and therefore are not included in the
virtual work. Also, the constraint on the motion of collar A is satisfied regardless of
the values of ¢ and X,. As a result, the virtual work is
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We substitute for 875 and collect the coefficients of 5¢ and 0.X4, which are the corre-
sponding generalized forces:

Q,=—fLsin(8—9) +NgL cos(8—9)s
0, =fcosp+Ng sin .

According to Coulomb’s law for sliding friction, F = p|Np|in the direction oppo-
site the velocity of end B. (Note that we use | Nl to describe the magnjtude of the
normal force, in order to emphasize that friction force would have the same value
if the reaction were opposite to the sense assumed in the free-body diagram.) To
describe the sense of the friction force we note that, when the constraint conditions
are satisfied, counterclockwise rotation of the bar, ¢ > 0, produces an upward move-
ment of collar B. Such movement corresponds to f being down and to the left, as
was assumed in the free-body diagram. Thus, we set

£ = u|Np|sen(@),

where sgn(¢) is the signum function: sgn(d) = ¢/|@| if ¢ # 0.
We must express the kinetic energy for arbitrary ¢ and X,. The velocity of the
center of mass is -
o . L. . (L, .
Vg =4+ @XTga= XA+E¢ sing I+ 7¢ cosp}J,
from which we obtain
T =im(¥- o) +%IG¢2 = %m(-‘s—Lz(t—)2+Ld)XA sing+X3).
The spring and gravity contribute to the potential energy. We let the elevation of
end A4 be the gravitational datum. The elongation of the spring is
A=Xylg=0—Xa= L—Xa,
so that
V = Lk(L—Xa)? +ymgLsin¢.
We now form Lagrange’s equations, using the earlier expressions for Q1 Q,, and

f. For the latter we use |Np| = Np sgn(Njp) in order to account for the possibility that
the reaction is not in the assumed sense. The resulting equation for ¢, = ¢ is

ImL2§+45mLX,sing+ LmgLcosd
= NpL[cos(8—)— sgn(Np9) sin(B — )}, @
while the equation for g2 = X4 is
mX,+imLd sing+imLe?cos ¢ —k(L—X4)
=NB[sinB+usgn(NEd>)cosB]. @
There are three unknowns: ¢, X, and Np. The third equation is the constraint ?O?‘
dition, eq. (1)-

It is possible without t00 much effort to reduce the pumber of equation$ in th;
present problem. Because the system is holonomic, the generalized coordinates !
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