K Can Be Chosen Conveniently To Make the Boundary Conditions Match, Where $K = \rho g l^2$. a) Determine the Explicit Potential Energy Functional, U, as a Definite Integral Over x, And Identify the Integrand f. b) Determine the **Extremum Solution**, z(x), Which Represents the Cable Configuration That Corresponds To the Minimum Potential Energy, Where You Can Use $K = \rho g l^2$, And Specify the End Point, (x_0, z_0) , In Terms Of x_0 . c) Sketch the 2D Cable Curve, Where the First End Point Is (0,1), And Second (Elevated) End Point Is (x_0, z_0) , Noting the Specific z_0 Value As a Function Of x_0 , And Describe If the Solution Function, z(x), Is Well Known (Stating Where You Have Seen It Before). d) Calculate the Potential Energy, U_{straight} , For the Path Which Is the Straight Line Path; Calculate the Potential Energy, U_{low}, For the Low Path That Goes Horizontally Along z = 1, And Then Vertically Along $x = x_0$; And Calculate the Potential Energy, U_{\min} , For Your Minimum Solution Path, z(x), All Between the Same Two End Points That You Have Identified (As Shown Below), Where All Results Should Be Expressed In the Given Parameters, ρ, g, l, x_0 . e) Finally, Compare All Potential Energy Results, $U_{\text{straight}}, U_{\text{low}}, U_{\text{min}}$, By Calculating the Ratio, $U/\rho gl^2$, For Dimensionless x_0 Length Values Of $x_0 = 0.1, 0.5, 1.0, 2.0, 3.0$ (If Necessary, To 5 Decimals), Also, Expand Each Result For a Small $x_0 \ll 1$, Up To the First Two Lowest Order Powers In x_0 , So That You Can Finally Give An