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Note this show that the pth powers of the elements of 
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are distinct, and therefore every element in 
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is the pth power of a unique element in
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. Therefore every element in 
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has a unique pth root; that is, for any 
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Please, can you explain with details this problem by step by step?
Remember that: Let a and b be indeterminants over the field
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, where p is prime then 
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