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STANDING WAVES IN STRINGS =~

OBIECT: To study the relationship between the stretching force and wave length in
a vibrating string and to determine the frequency of a string vibrator by
means of standing waves. ,

APPARATUS: Vibrating speaker, frequency generator, hanger, weights, pulley, string,
meter stick and balance.
1. BACKGROUND AND THEORY

When a uniform cord is subjected to a stretching force and is set to oscillate at one end, a
transverse wave travels down the string. That is, the motion of any particle of the cord is at right
angles or transverse to the direction of propagation of the wave. Another kind of wave is
itudi in which the motion of the particle is along the direction of propagation of the

wave. In this experiment, we shall be dealing with transverse waves in a stretched string as
shown in Fig. 1. These waves consist of a regular succession of crests (the top of the wave such
as points A and C) and troughs (points B and D). The two curves (a) and (b) are the two
waveforms at time t=0 and t=T/4 where T is characterized as the PERIOD to the wave motion in
Fig. 1.

toli : The maximum displacement with respect to the undisturbed string.
Period, T: The time required for the wave to travel between two successive crests or

troughs.

Frequency. f: The number of crests or troughs on the string per unit time, i.e., f = 1/T.
Phase vel., v: The distance traveled per unit time, i.e€.,

A (1

For a stretched string, the velocity v of a transverse wave is related to the stretching force F by the

following equation:
F €3
v="\y

where p is the mass per unit length of the string. Therefore, for a fixed frequency f and a uniform
string, the stretching force (tension in the string) is directly proportional to the square of the
wavelength.

2. STANDING WAVES

When transverse waves are sent along a string fixed at one end, reflection of waves takes place
at the fixed end. Consequently, the string is acted upon by two similar waves traveling in
opposite directions. Provided the elastic limit of the string is not exceeded and the displacements
are sufficiently small, the resultant displacement of the string at each point is the algebraic sum of
the displacement of the incident and reflected waves, a fact called the Pri iti

The formation of standing waves in a stretched string is shown in Fig. (2). In this figure the
dashed and dotted curves represent the transverse waves (at t=0) with the same displacement
everywhere and therefore the resultant displacement is of double the amplitude of the individual
waves, shown by a continuous line curve. At time t=T/4, Fig. 2(b), each wave will have
progressed a quarter of wavelength so the resultant displacement everywhere is zero. Similarly,
at t=T/2 and t=3T/4, the displacements of the individual waves and the resultant standing wave
are shown in Figs. 2(c) and (d), respectively. Fig. 2(e) is the representation of standing wave
formation at t=T. It should be noted that at those places marked N, the resultant displacement is
zer6 and are called the NODES. Midway between nodes, the waves have maximum displacement
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[image: image2.png]and are marked A, known as ANTINODES. The distance between two successive nodes or
antinodes is half the wavelength (1/2) and between an adjacent node and antinode, it is 1/4.
Therefore, for any length L of the vibrating string in which the number of nodes is n, the
wavelength

2L ’ 3)

Fig. (3) shows an experimental arrangement for producing standing waves in a string using a
vibrating speaker controlled by a frequency generator. The generator controls not just the
wavelength dependence of standing waves but the frequency dependence as well. The speaker
will vibrate at maximum amplitude, however, if the driving mechanism has the same frequency as
the natural frequency of the vibrating string. When the string vibrates with maximum amplitude,
it is said to be in resonance with the vibrating speaker and standing waves are set up in the string.
A stretched string has many natural frequencies. Any frequency that will permit a node at each
end, i.e., any frequency for which the distance between the two fixed points in the string is an
integral number of half wave lengths, is a natural frequency. Of these natural frequencies only
one which is equal to the frequency f of the speaker produces resonance. At resonance the
frequency of the speaker is given by Eq. (3).

@)) Measure the length of the string (at least one meter) using a meter stick. There may be a
Im length of string at the TA’s desk for the class to use as their measurement. Do not use
this in your experiment--use the one in your box. Return the 1m string to the TA’s desk.
Using the balance, measure the mass of the string,

2) Attach one end of the string to the pin of the speaker. The other end of the string runs
over the pulley and is held in place by a known mass M. Measure the distance between

 the speaker pin and the pulley, D.

3) Turn on the frequency generator. Make sure the output is a sine wave. The frequency
range should be set on the second to the lowest output (50Hz). There is a digital output at
the lower left of the generator that shows the frequency the string is vibrating at. The two
knobs below are for changing the range of that frequency. The Coarse button moves
through rather quickly. When you see standing waves forming, you should switch to the
Fine knob to fine tune the standing waves. Do not change any of the other knobs except
the Output. This should be set at maximum. Measure the number of nodes formed and the
frequency of the oscillator from the digital ouput. Do this for at least 5 different
frequencies. Be careful for subharmonics. Try to see a pattern in the frequencies and the
nodes.

“) Repeat step 2 for at least two additional values of mass M.

QUESTIONS

1) Using Equation 3, plot a graph of frequency of standing wave, f, versus  the inverse of
the wavelength, 1/A, for the first value of hanging mass. Draw a "best-fit" line through
the points and determine the slope of the line. What is the physical significance of the
slope? What is the y-intercept of your line? What is its physical significance? Repeat
this process for the other values of hanging mass.

(2)  Using the value for v found from Eq. 1, and the value for the tension in the string, F=Mg,
calculate the mass per unit length of the string you used. From the known values of the
mass of the string and its length, calculate the actual mass per unit length. Do your two
values agree? If not, why?

(3)  If the nodes were not formed at the extreme ends of the strings in your experiment but
you had still measured the total length L to find the wavelength, say, in 3 segment mode,
what error would have been introduced?

(4)  Indetermining the mass per unit length of the string, you ignored the fact that the string
stretches when under tension. Explain, what effect would this have on the data?

5) Include the critique for this experiment.
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FIG. 3: EXPERIMENTAL ARRANGEMENT
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