1) Find the curl, $\nabla \times F$, for the following forces: (a) $F=k r$; (b) $F=\left(A x, B y^{2}, C z^{3}\right)$; (c) $F=\left(A y^{2}, B x, C z\right)$, where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and k are constants.
2) Verify that the gravitational force - $\mathrm{GMmr} / \mathrm{r}^{2}$ on a point mass m at r, due to a fixed point mass M at the origin, is conservative and calculate the corresponding potential energy.
3) A mass m is in uniform gravitational field, which exerts the usual force $F=m g$ vertically down, but with g varying with time, $\mathrm{g}=\mathrm{g}(\mathrm{t})$. Choosing axes with y measured vertically up and defining $\mathrm{U}=\mathrm{mgy}$ as usual, show that $F=-\nabla U$ as usual, but, by differentiating $E=(1 / 2) \mathrm{mv}^{2}+U$ with respect to t, show that E is not conserved.
4) Verify the three equations: $\mathrm{x}=\mathrm{r} \sin \theta \cos \phi, \mathrm{y}=\mathrm{r} \sin \theta \sin \phi$, and $\mathrm{z}=\mathrm{r} \cos \theta$ that give $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in terms of the spherical polar coordinates r, θ, ϕ. (b) Find expressions r, θ, ϕ in terms of $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
5) Consider a head-on elastic collision between two particles. Prove that the relative velocity after the collision is equal and opposite to that before. That is, $v_{1}-v_{2}=-\left(v^{\prime}{ }_{1}-v^{\prime}{ }_{2}\right)$, where v_{1} and v_{2} are the initial velocities and $v^{\prime}{ }_{1}$ and $v^{\prime}{ }_{2}$ the corresponding final velocities.
6) A particle of mass m_{1} and speed v_{1} collides with a second particle of mass m_{2} at rest. If the collision is perfectly inelastic, what fraction of the kinetic energy is lost in the collision? Comment on your answer for the cases that $\mathrm{m}_{1} \ll \mathrm{~m}_{2}$ and that $\mathrm{m}_{2} \ll \mathrm{~m}_{1}$.
