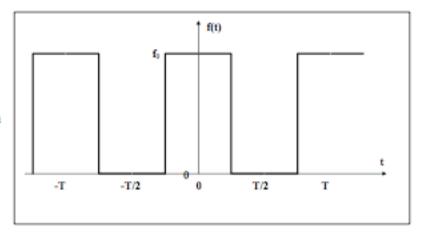
**Problem 1.** Consider a particle of mass m = 0.1000 kg, connected to a fixed point by a spring of force constant k = 10.00 N/m. The mass is subject to a damping force


$$f_{res} = -2\beta m v$$
,

where the damping force constant is given by  $\beta = 1.000 \text{ sec}^{-1}$ .

- (a) Give the general expression for x(t), the position of the particle as a function of time, with numerical values for all constants involved (to 4 significant figures).
- (b) Suppose that initially (at time t = 0) the particle is at position  $x_0 = 0$ , with velocity  $v_0 = 1.00$  m/s. Give the expression for the position x(t) of the particle as a function of time, with numerical values for all constants involved (to 4 significant figures). Calculate

the particle's velocity and position after exactly 3 seconds.

(c) Calculate the particle's total energy (kinetic plus potential) as a function of time. Evaluate the energy in Joules after exactly 3 seconds.



- (d) How long (in seconds) will it take for the particle's time-averaged potential energy to become about equal to  $1/2 k_B T$ , the average thermal energy per degree of freedom, at room temperature? Here T is the temperature in Kelvins, and the Boltzman constant  $k_B$  is equal to  $k_B = 1.38 \times 10^{-23} \text{ J/K}$ .
- (e) Now suppose that the damped oscillator is driven by a driving force f(t), given by the square wave of period T = 1.000 sec and amplitude  $f_0 = 25.0$  N, as shown in the figure, with corresponding frequency v = 1/T. Calculate the Fourier coefficients  $a_n$  and  $b_n$  for this signal.
- (f) Calculate the response of the damped oscillator to this driving force, and give the amplitudes, in meters, of the three largest sinusoidal components.