Matrix Theory – Homework 7

Prove the following in several stages:

The composition of any two reflections, whose lines of reflection are orthogonal, is a half-turn.

We will work in the vector space \mathbb{R}^2 .

First Stage

Refer to the diagram provided. The line l makes some angle θ with the x-axis.

Let us suppose that the point $(c,d) \in l$. (It is clear that, if we were given θ , we could find such a point (c,d), and if we were given (c,d), we could find θ .)

Informally, we define $f: \mathbb{R}^2 \to \mathbb{R}^2$ to be the action of reflecting any point \vec{x} through l.

Now consider any arbitrary $\vec{x} = (x_1, x_2)$. (Ignore (e_1, e_2) in the diagram for now.)

1. Using the notation of projections, derive an expression for the vector $f(\vec{x})$. You may suppose that \vec{c} is the vector starting at the origin and going to (c,d). Do **not** attempt to evaluate it further at this stage; just leave things in terms of \vec{c} and \vec{x} .

Second Stage

1. Evaluate your expression further, using the formula for the projection of a point. Your final expression must be given in the form $A\vec{x}$, for some matrix A whose entries are in terms of c and d.

Notice that you have constructed a formula for the action of reflecting \mathbb{R}^2 through the line going through the origin and (c,d), for **any** $c,d \in \mathbb{R}$.

Third Stage (sanity check Using your formula, let $k \in \mathbb{R}$ and evaluate f((kc, kd)).

1. What d you get?

Fourth Stage

Consider a specific situation and draw a diagram of it: $\vec{x} = (2,0)$, $(c,d) = (3,\sqrt{(3)})$.

Take (e_1, e_2) to be the point of intersection of l and the line orthogonal to l intersecting \vec{x} .

- 1. What is θ ?
- 2. What is $(e_1 e_2)$?

You should notice something interesting about the triangle $\Delta(0,0)$, (2,0), f((2,0)).

- 3 Figure out f((2,0)) using standard geometry and this observation.
- 4. Now apply your formula to determine f((2,0)) . Do you get the same answer?

Fifth Stage

Now rotate your point (c,d) ninety degrees counterclockwise.

- 1. What coordinates does it have?
- 2. Define the line m to be the line through this point and the origin. Define $g: \mathbb{R}^2 \to \mathbb{R}^2$ to be the action of reflecting points through m. So $g(\vec{x}) = B\vec{x}$, for some matrix B.

3. According to your formula from the Second Stage, what is *B*?

Sixth Stage

Now we note that $g(f(\vec{x}))=g(A\vec{x})=B(A\vec{x})=(BA)\vec{x}$. 1. What is BA? Is this the matrix for the half-turn linear operator?