1. First find a general solution of the differential equation $\frac{d y}{d x}=3 y$. Then find a particular solution that satisfies the initial condition that $y(1)=4$.
2. Solve the initial value problem $\frac{d y}{d x}=y^{3}, y(0)=1$.
3. Nyobia had a population of 3 million in 1985. Assume that this country's population is growing continuously at a 5% annual rate and that Nyobia absorbs 40,000 newcomers per year. What will its population be in the year 2015 ?
4. Find the center and radius of the circle described in the equation $2 x^{2}+2 y^{2}-6 x+2 y=3$.
5. Find an equation of the ellipse with center ($-2,1$), horizontal major axis 10 , and eccentricity $\frac{2}{5}$.
6. Determine whether or not the sequence $a_{n}=\sqrt[n]{2^{2 n+3}}$ converges and find its limit if it does converge.
7. Write the Taylor series with center zero for the function

$$
f(x)=\ln \left(1+x^{2}\right)
$$

8. Given $\mathrm{a}=2 \mathrm{i}+3 \mathrm{j}, \mathrm{b}=3 \mathrm{i}+5 \mathrm{j}$, and $\mathrm{c}=8 \mathrm{i}+11 \mathrm{j}$ express c in the form ra + sb where r and s are scalars.
9. Given $\mathrm{a}=<4,-3,-1>$ and $\mathrm{b}=<1,4,6>$, find $\mathrm{a} \times \mathrm{b}$.
10. Find the arc length of the curve given by $x=\cos 3 t, y=\sin 3 t$, $\mathrm{z}=4 \mathrm{t}$, from $\mathrm{t}=0$ to $\mathrm{t}=\frac{\pi}{2}$.
11. Compute the first-order partial derivatives of $f(x, y)=\frac{2 x}{x-y}$.
12. Use the method of Lagrange multipliers to find the extreme values of $3 x-4 y+12 z$ on the spherical surface with equation $x^{2}+y^{2}+z^{2}=1$.
13. Evaluate $\int_{1}^{3} \int_{0}^{1}(2 x-3 y) \mathrm{dxdy}$.
14. Find the volume of the solid bounded by $x=0, y=0, z=0$, and $x+2 y+3 z=6$ by triple integration.
15. Calculate the divergence and curl of the vector field $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=2 \mathrm{xi}+3 \mathrm{yj}+4 \mathrm{zk}$.
16. Use Green's theorem to evaluate $\oint_{C} P d x+Q d y$
$P(x, y)=x y, Q(x, y)=e^{x} ; C$ is the curve that goes from $(0,0)$ to $(2,0)$ along the x -axis and then returns to $(0,0)$ along the parabola $\mathrm{y}=2 \mathrm{x}-\mathrm{x}^{2}$.
