Let G be a finite group of order 2k, k odd, that contains a cyclic subgroup of order k. Determine a formula to compute the number of subgroups of G that are of odd order.
Proof:

Since |G|=2k. By Lagrange’s theorem. If H is a subgroup of G, then |H| divides |G|, i.e.., |H| is a factor of |G|

So we are looking for all odd order subgroups, i.e.., we need to find out all those factors of K

Let H is the cyclic subgroup of G which of order k

m is the number of subgroups of odd number.

Case 1:If k=1 

Then m=1 the  only odd subgroup is {
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Case 2:If k>1 and k is a prime.

The divisor will be 1 and k

Then m=2, the subgroups of odd number are {
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} and H itself.

Case 3: If k is a odd composite number.
Let 
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 is the powers of k’s factors such that 
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Then, m=
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