11. Griffiths, p. 151, Prob. 3.27. Obtain an Approximate Electric Potential, $V(\mathbf{r})$, At a Large Distance, $r \gg a$, From a Distribution Of Charges, Where the Multipole Expansion Of $V(\mathbf{r})$ Includes Only the First Two Terms, the Monopole

And the Dipole Terms, Where $V(\mathbf{r}) \approx V_{\text{mon}}(\mathbf{r}) + V_{\text{dip}}(\mathbf{r})$, And $V_{\text{mon}}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0}\frac{Q}{r}$,

 $V_{dip}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2}$, And Where $Q = \sum_{i=1}^n q_i$, And $\mathbf{p} = \sum_{i=1}^n q_i \mathbf{r}'_i$. Given the Value of

the Charges, q_i , and the Positions of the Charges, \mathbf{r}'_i , the Monopole and Dipole

Terms can be Calculated. Write Down the Approximate Electric Potential Result In Spherical Coordinates, (r, θ, ϕ) , And the Parameters, q, a, ε_0 .

Note that the Following Pages of Problems (referred to above) are Copied from Griffiths (for your convenience).