Surface Potential Is the Same. Next, Consider the First Few Legendre Polynomials, $P_0(\cos\theta) = 1$, $P_1(\cos\theta) = \cos\theta$, $P_2(\cos\theta) = (3\cos^2\theta - 1)/2$, And $P_3(\cos\theta) = (5\cos^3\theta - 3\cos\theta)/2$, And Re-write the Surface Potential Only In Terms Of a Specific Sum, Finding the Coefficients C_i , Of Various Legendre Polynomials, As $V_0 = k(C_0P_0 + C_1P_1 + ...)$. Finally, By Imposing the Boundary Condition For the Surface Potential, $V(R,\theta) = V_0 = k\cos 3\theta = k(C_0P_0 + C_1P_1 + ...)$, Explicitly Represented Using Legendre Polynomials, Using Your General Potential Sum Solution, $V(r,\theta)$, At r = R, You Should Then Be Able To Successfully Project Out the Coefficients, A_i, B_i , By Integrating This Surface Boundary Condition Constraint, Using the Orthonormality Relation Of the Legendre Polynomials, As $\frac{2l+1}{2}\int_0^{\pi} V_0(\theta)P_i(\cos\theta)\sin\theta d\theta$. Write Down the Electrostatic Exterior, r > R, Potential Solution, $V(r,\theta)$, In Terms Of Specific Legendre

Polynomials, $P_l(\cos\theta)$, the Given Parameters, k, R, And the Coordinates, r, θ .