Preparing for Trigonometry TAH Assignment Number 3

Some Algebra Review

- 1. Write the equation of: (a) a circle centered at (3,4) with radius 5;
 - (b) a line containing (-1,3) and (5,18);
 - (c) the locus of points equidistant from (-5,4) and (3,16)
- 2. Find the points of intersection of $x^2 + y^2 = 1$ and $y = x\sqrt{3}$
- 3. Simplify $\frac{x^3 y^3}{x^2 y^2}$
- 4. Simplify (a) $\frac{6}{\sqrt{3}} + \sqrt{12}$ (b) $\frac{6}{\sqrt{6}}$ (c) $\frac{a}{\sqrt{a}}$

Some Geometry Review

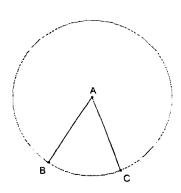
Refer to circle A at right, which has radius 12.

- 1. Find the circumference.
- 2. If $\angle A = 30^{\circ}$, find the length of arc BC
- 3. If $\angle A = 80^{\circ}$, find the length of arc BC
- 4. If $\angle A = 120^{\circ}$, find the length of arc BC
- 5. If arc BC has length 3π , find $\angle A$
- 6. If arc BC has length 16π , find $\angle A$

Some function stuff

From the text, do these problems:

pages 136-137, problems 15, 33, 35 page 143, problems 1, 3, 7 pages 149-150, problems 1, 11, 21



Some problems

From the text, do these problems:

page 207, problem 32 page 162, problem 9

Use your graphing calculator

From the text, do these problems:

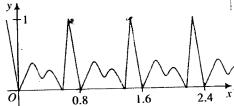
page 162, problem 15

WRITTEN EXERCISES

In Exercises 1–4, the graph of a function f is given. Tell whether f appears to be periodic. If so, give its fundamental period and its amplitude, and then find f(1000) and f(-1000).

A

2.



3.

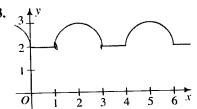
1

d

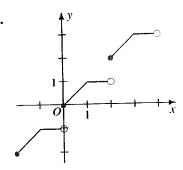
al

is

.is



4



5. Use the graph of y = f(x), shown at the right, to sketch the graph of each of the following.

$$\mathbf{a.} \ \ y = 2f(x)$$

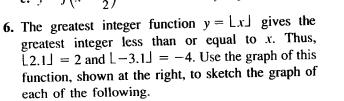
b.
$$y = -\frac{1}{2}f(x)$$

c.
$$y = f(-2x)$$

$$\mathbf{d.} \ \ y = f\left(\frac{1}{2}x\right)$$

$$e. \ y = f\left(x - \frac{1}{2}\right)$$

f.
$$y = f(-x) + 1$$



each of the following.
a.
$$y = \frac{1}{2} \lfloor x \rfloor$$

b.
$$y = -2 L x J$$

$$\mathbf{c.} \ \ y = \left\lfloor -\frac{1}{2} x \right\rfloor$$

d.
$$y = \lfloor 2x \rfloor$$

e.
$$y = [x - 1]$$

f.
$$y = 2 | x | + 1$$

7. Sketch the graph of each of the following.

a.
$$y + 2 = |x|$$

b.
$$y = |x - 3|$$

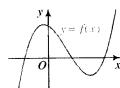
d.
$$y = 2|x + 1|$$

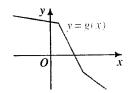
e.
$$y + 1 = -|x|$$

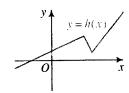
c.
$$y - 4 = |x + 5|$$

f.
$$y - 3 = |2x|$$

7. The graphs of f, g, and h are shown below. Which functions are one-to-one? Which functions have inverses?







8. Which of the following functions have inverses?

$$\mathbf{a.}\ f(x) = |x|$$

b.
$$f(x) = x^3$$

c.
$$f(x) = x^4$$

d.
$$f(x) = x^4, x \le 0$$

- 9. On the dial or the buttons of a telephone, a telephone function T pairs letters of the alphabet with the digits 2-9. For example, T(A) = 2 and T(D) = 3. Does T have an inverse? Explain.
- 10. Explain how the vertical-line test (given on page 121) can be used to justify the horizontal-line test (given on page 148).
- 11. Explain why the domain of a one-to-one function f is the range of f^{-1} and why the domain of f^{-1} is the range of f.

WRITTEN EXERCISES

1. Suppose a function f has an inverse. If f(2) = 6 and f(3) = 7, find:

a.
$$f^{-1}(6)$$

b.
$$f^{-1}(f(3))$$

c.
$$f(f^{-1}(7))$$

2. Suppose a function f has an inverse. If f(0) = -1 and f(-1) = 2, find: **a.** $f^{-1}(-1)$ **b.** $f^{-1}(f(0))$ **c.** $f(f^{-1}(2))$

a.
$$f^{-1}(-1)$$

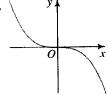
b.
$$f^{-1}(f(0))$$

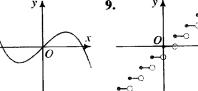
c.
$$f(f^{-1}(2))$$

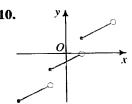
- 3. If g(3) = 5 and g(-1) = 5, explain why g has no inverse.
- 4. Explain why $f(x) = x^3 + x^2$ has no inverse.
- 5. Let h(x) = 4x 3.
 - **a.** Sketch the graphs of h and h^{-1} .
- **b.** Find a rule for $h^{-1}(x)$.

- **6.** Let $L(x) = \frac{1}{2}x 4$.
 - **a.** Sketch the graphs of L and L^{-1} .
- **b.** Find a rule for $L^{-1}(x)$.

In Exercises 7-10, the graph of a function is given. State whether the function has an inverse.







149

State whether the function f has an inverse. If f^{-1} exists, find a rule for $f^{-1}(x)$ and show that $f(f^{-1}(x)) = f^{-1}(f(x)) = x$.

11.
$$f(x) = 3x - 5$$

12.
$$f(x) = |x| - 2$$

13.
$$f(x) = \sqrt[4]{x}$$

14.
$$f(x) = \frac{1}{x}$$

15.
$$f(x) = \frac{1}{x^2}$$

11.
$$f(x) = 3x - 5$$

12. $f(x) = |x| - 2$
13. $f(x) = \sqrt[4]{x}$
14. $f(x) = \frac{1}{x}$
15. $f(x) = \frac{1}{x^2}$
16. $f(x) = \sqrt{5 - x}$
17. $f(x) = \sqrt{4 - x^2}$
18. $f(x) = \sqrt{5 - x^2}$
19. $f(x) = \sqrt[3]{1 + x^3}$

17.
$$f(x) = \sqrt{4 - x^2}$$

18.
$$f(x) = \sqrt{5-x^2}$$

19.
$$f(x) = \sqrt[3]{1+x^3}$$

Sketch the graphs of g and g^{-1} . Then find a rule for $g^{-1}(x)$.

B 20.
$$g(x) = x^2 + 2$$
, $x \ge 0$

21.
$$g(x) = 9 - x^2, x \le 0$$

20.
$$g(x) = x^2 + 2$$
, $x \ge 0$
21. $g(x) = 9 - x^2$, $x \le 0$
22. $g(x) = (x - 1)^2 + 1$, $x \le 1$
23. $g(x) = (x - 4)^2 - 1$,

23.
$$g(x) = (x-4)^2 - 1, x \ge 4$$

In Exercises 24–26, show that $h^{-1}(x) = h(x)$. Then sketch the graph of h. You may wish to use a computer or graphing calculator.

24.
$$h(x) = \sqrt[3]{1-x^3}$$

25.
$$h(x) = \frac{x}{x-1}$$

25.
$$h(x) = \frac{x}{x-1}$$
 26. $h(x) = \sqrt{1-x^2}, x \ge 0$

- 27. a. Using the results of Exercises 24-26, state how the graph of h is related to the line y = x when $h^{-1}(x) = h(x)$.
 - **b.** Find a function h, different from those in Exercises 24-26, such that $h^{-1}(x) = h(x).$
- 28. Refer to the definition of an increasing function given on page 138.
 - a. Explain why an increasing function must have an inverse.
 - **b.** Suppose f is an increasing function. Is f^{-1} also an increasing function? Explain your answer and support it with at least two examples.

Q9. Which statement below is true? Prove it. (i)
$$(f \circ g)^{-1} = f^{-1} \circ g^{-1}$$
 (ii

(i)
$$(f \circ g)^{-1} = f^{-1} \circ g^{-1}$$

(ii)
$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$

- **30.** If f is a linear function such that f(x + 2) f(x) = 6, find the value of $f^{-1}(x+2)-f^{-1}(x)$.
- **31.** Suppose a, b, and c are constants such that $a \ne 0$. Let $P(x) = ax^2 + bx + c$ for $x \le -\frac{b}{2a}$. Find a rule for $P^{-1}(x)$.

II CALCULATOR EXERCISES

In the next chapter we will define the functions $f(x) = e^x$ and $g(x) = \ln x$. You can use a calculator to learn something about these functions.

- 1. Enter any number. Press the $|e^x|$ and $|\ln x|$ keys alternately several times. What do you notice? Repeat this process for several other numbers. How would you describe the relationship between $f(x) = e^{x}$ and $g(x) = \ln x$?
- 2. By entering various numbers, determine whether $f(x) = e^x$ is defined for all real numbers.
- 3. By experimenting, determine the domain of $g(x) = \ln x$.

- 31. a. If $b^m > b^n$ and b > 1, what can you say about m and n? **b.** If $b^m > b^n$ and 0 < b < 1, what can you say about m and n?
- **32.** Solve: **a.** $8^x > 8^{7-x}$ **b.** $0.6^{5x} > 0.6^{x/2}$ **c.** $e^{3x} < e^x$ **d.** $\left(\frac{1}{2}\right)^x > 2^{6-x}$
- 33. Archaeology All living organisms contain a small amount of carbon 14, denoted C14, a radioactive isotope. When an organism dies, the amount of C¹⁴ present decays exponentially. By measuring the radioactivity N(t) of, say, an ancient skeleton of an animal and by comparing that radioactivity with the radioactivity N_0 of living animals, archaeologists can tell approximately when the animal died.
 - a. Given that the half-life of C¹⁴ is about 5700 years, write an equation relating N(t), N_0 , and the time t since the animal's death.
 - b. Suppose it is found that, for a certain animal, $N(t) = \frac{1}{10}N_0$. To the nearest 100 years, how long ago did the animal die?

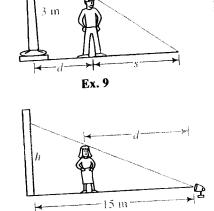
- 34. Archaeology An archaeologist unearths a piece of wood that may have come from the Hanging Gardens of Babylon, about 600 B.C. The amount of radioactive C^{14} in the wood is $N(t) = 0.8N_0$. Is it possible that the wood could be from the Hanging Gardens? (The half-life of C¹⁴ is about 5700 years.)
- 35. Prove: $\log_b c = \frac{1}{\log_c b}$

36. Prove: $(\log_a b)(\log_b c) = \log_a c$

Evaluate each expression. (Use the results of Exercises 35 and 36.)

- 37. $\log_3 2 \cdot \log_2 27$ 38. $\log_{25} 8 \cdot \log_8 5$ 39. $\frac{1}{\log_2 6} + \frac{1}{\log_3 6}$ 40. $\frac{1}{\log_4 6} + \frac{1}{\log_6 6}$
- For Exercises 41 and 42, use a computer or a graphing calculator to solve each inequality. Give answers to the nearest hundredth.
- **41.** On a single set of axes, graph $y = \log_2 (x 1)$ and $y = \log_3 x$. (See Class Exercise 9 on page 205.) Use your graph to solve $\log_2(x-1) > \log_3 x$.
- 42. Solve each inequality using the method suggested in Exercise 41. **a.** $e^x < \ln(x + 5)$ **b.** $2^x \leq \log_5 x$ **d.** $\log x \ge \log_4 x^2$ c. $\log 20x > 2^{-x}$
- 43. Oceanography After passing through a material t centimeters thick, the intensity I(t) of a light beam is given by $I(t) = (4^{-ct})I_0$, where I_0 is the initial intensity and c is a constant called the absorption factor. Ocean water absorbs light with an absorption factor of c = 0.0101. At what depth will a beam of light be reduced to 50% of its initial intensity? 2% of its initial intensity?
- 44. Prove: $a^{\log b} = b^{\log a}$
- **45.** Prove: $\frac{1}{\log_a ab} + \frac{1}{\log_b ab} = 1$

- 10. When a girl 1.75 m tall stands between a wall and a light on the ground 15 m away, she casts a shadow h meters high on the wall, as shown at the right. Express h as a function of d, the girl's distance in meters from the light.
- 11. A box with a square base has a surface area (including the top) of 3 m². Express the volume V of the box as a function of the width w of the base.
- 12. A box with a square base and no top has a volume of 6 m³. Express the total surface area A of the box as a function of the



Ex. 10

- width w of the base. 13. A stone is thrown into a lake, and t seconds after the splash the diameter of the circle of ripples is t meters.
 - a. Express the circumference C of this circle as a function of t.
 - **b.** Express the area A of this circle as a function of t.
- 14. A balloon is inflated in such a way that its volume increases at a rate of
 - a. If the volume of the balloon was 100 cm³ when the process of inflation began, what will the volume be after t seconds of inflation?
 - b. Assuming that the balloon is spherical while it is being inflated, express the radius r of the balloon as a function of t.

Part (b) of Exercises 15 and 16 requires the use of a computer or graphing calculator.

- B 15. Manufacturing A box with a square base and no top has volume 8 m³. The material for the base costs \$8 per square meter, and the material for the sides
 - a. Express the cost C of the materials used to make the box as a function of the width w of the base.
 - b. Use a computer or graphing calculator to find the minimum cost.
 - 16. Manufacturing A cylindrical can has a volume of 400π cm³. The material for the top and bottom costs 2¢ per square centimeter. The material for the vertical surface costs 1¢ per square centimeter.
 - a. Express the cost C of the materials used to make the can as a function of the
 - b. Use a computer or graphing calculator to find the minimum cost.