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Section 7 Notes:  The Lebesgue Integral

Definition 7.1  Let L be the set of real-valued functions f such that for some g and h in 
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 f=g-h almost everywhere.  The set L is called the set of Lebesgue integrable function on 
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 and the Lebesgue integral of f is defined as follows:  
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Theorem 7.2:  If f is Riemann integrable on [a,b], then it is Lebesgue integrable on [a,b] and 
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Theorem 7.3  L is a linear space and the integral is a linear functional on L ; that is, if 
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Theorem 7.4   L is a lattice.
Theorem 7.5  If 
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almost everywhere, then 
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