COMMUNICATIONS AND CONTROL

CHAPTER 1
MATHEMATICAL MODEL
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Problems

1.1 Specify variable z and coefficients a, b and c in the differential equation (1.5) for

(a) the mass-spring-damper system in Fig. 1.1 described by (1.1), and
(b) the RLC circuit in Fig. 1.2 described by (1.3).

1.2 Let £ = u., where u, is the voltage on the capacitor shown in Fig. 1.6. Show that the
dynamics of this RLC circuit can be described by a 2nd-order differential equation
in form (1.5). '
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Figure 1.6: A R-L-C circuit

1.3 (Advanced) If time ¢ in (1.3) is in seconds. Show that, to balance the equation (1.3),
the unit of L/R has to be in seconds, and LC in square of seconds. Moreover, RC
also has to be in seconds.

1.4 Theliquid level in a tank as shown in Fig. 1.7 is governed by the differential equation
h = —0.01v/h + 100u, where u is the control inflow to the tank. Derive a linear
model of the system by linearising the non-linear one around the operating point
ho =0.1m.
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Figure 1.7: A liquid tank
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Mathematical Model

Dynamic systems such as mechanical, electronic and chemical processes may normally
be described by ordinary differential equations (ODEs). Such descriptions are called
mathematical models of dynamic systems. For simplicity, in many cases a mathematical
model of a physical system is also called a system. This should not introduce any confusion
in distinguishing a real system from its mathematical description.

1.1 Mass-Spring-Damper System

By Newton’s second law of motion, the simple mechanical system of Fig. 1.1 is de-
scribed by the 2nd-order linear ODE for t > 0

d*y . dy
— —+ky=u. i1
mogtf thy=u (1.1)
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Figure 1.1: Mass-spring-damper system

Friction f

In (1.1) y is the displacement and u is the force as external excitation. m is the mass,
f the friction factor and k the spring coefficient. m, f and k are constants. Eq. (1.1) is
said to be linear since each term on the both sides of the equation is a linear function of
Ys %}f, % or u.
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1.2 R-L-C Circuit System

According to Kirchhoff’s current law, the voltage v in the basic RLC circuit system of
Fig. 1.2 obeys the linear integro-differential equation for ¢t > 0
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Figure 1.2: R-L-C circuit

In (1.2) v is the voltage of the capacitance C and u is the current source as excitation.
R is the resistance and L is the inductance. The values of R, L and C are constants.

t
If choose the current of the inductance, i = — / vdt as the variable of interest, the
integro-differential equation (1.2) becomes the 2nd-order ODE
% Ldi .
LC@—%EZZE—H—U (1.3)

which is analogous to the mechanical system model (1.1).
Another way of converting the integro-differential equation (1.2) into a 2nd-order ODE
is to differentiate both sides of (1.2), which yields
D dv v du
- L= 1.4
ST AT (14)
Clearly, as shown in (1.2), (1.3) and (1.4), a system may have several models depending
on the form of expressions and/or the choice of variables of interest. Different choices
of forms and/or variables lead to various mathematical models. However, as may be
expected, some essential properties of the system should remain unchanged in the distinct
models. This will further be discussed.

1.3 Analogy of Dynamic Systems

Dynamic systems with individual physical nature could have analogous behaviors.
Although the mass-spring-damper system and the electric circuit are physically totally
different, they are mathematically analogous. This is because differential equations (1.1)
and (1.3) can commonly be denoted by

d’z  dx

aa@——l-bat—-%-cx:u (1.5)




