Project #3

Spectral Analysis

General

The spectra of a sampled signal may be obtained by using the discrete Fourier transform. The most common implementation of the discrete Fourier transform is the fast Fourier transform or FFT. In MATLAB, this function is fft(). Regardless of how the transform is implemented we have the following transform relationship:

[image: image1.wmf]]}

[

FFT{

)

(

n

x

k

X

=

.

The n independent varible is a time index, and the k independent variable is the frequency index. The FFT is taken over N time samples and produces N frequency samples. If x[n] has a frequency component at , then the corresponding frequency index is k, where

[image: image2.wmf],

s

N

k

W

W

=

where s is the sampling rate.

Spectra of Sinewaves

Create a 16 Hz sinewave in MATLAB using the following code:

>> n = 0:255;

>> t = n/256;

>> f = 16;

>> x = sin(2*pi*f*t);

>> plot(t,x);

Verify the frequency of the sinewave by examining the plot. Now, find the spectrum of the sinewave using the following code

>> X = fft(x)/256;

>> f = 0:255;

>> plot(f,abs(X));

Again, verify the frequency of the sinewave by examining the frequency plot. A peak should show-up at the appropriate frequency (k=16). Another peak should show-up at 256 minus the first frequency—this frequency is an alias frequency. The first half of the frequency plot corresponds to frequencies from  = 0 to s/2. The second half of the frequency plot corresponds to the lower half of an alias, which spans frequencies from  = s/2 to s.

This last exercise in frequency analsysis was straightfoward because the sampling frequency was equal to the number of samples (N = s). When the sampling frequency is not equal to the number of samples, we need to use

[image: image3.wmf],

s

N

k

W

W

=

MATLAB can acquire samples from the microphone input of the PC soundcard. This acquisition is done using the wavrecord command:

>> x = wavrecord (8000,8000);
This command records 8000 samples at a rate of 8000 samples per second. Enter the above command, but before you hit Enter, whistle into the microphone and continue to do so after you hit Enter for about one second. (If you can’t whistle, get a whistle or a flute or a panpipe to produce a tone.) Whistling produces a nearly pure sinewave. Plot eighty of the samples of this acquired waveform:

>> t = [0:79]/8000;

>> plot(t,x(1:80));

This plot corresponds to one one-hundredeth of a second. Count the number of cycles and calculate the approximate frequency of the whistled sinewave. You can generate and plot the spectrum of the sampled sinewave by using the FFT function

>> X = fft(x)/8000;

>> f = 0:7999;

>> plot(f,abs(X));

You can see the spectrum of just the baseband spectrum (without the alias) using the following MATLAB code:

>> X = fft(x)/8000;

>> f = 0:3999;

>> plot(f,abs(X(1:4000)));

Verify that the frequency of the generated spectrum is the same as the frequency calculated by counting the number of sinewaves in one one-hundredeth of a second.

In addtion to acquiring signals from the microphone input of the soundcard, MATLAB can also generate signals that go out to the speaker or to the headphones. The following code will generate one second of a 1 kHz sinewave and play it through the soundcard:

>> n = 0:7999;

>> t = n/8000;

>> f = 1000;

>> x = sin(2*pi*f*t);

>> wavplay (x, 8000);

Show the code to generate two seconds of a 2 kHz sinewave.

You can practice your “perfect pitch” by recording a whistled (or sung) waveform, playing it back followd by a synthetically generated (as above) waveform. The note middle “C” is 261 Hz. The note “C#” above middle “C” is 261 times the twelth-root of two:

[image: image4.wmf].

0595

.

1

2

12

#

C

C

C

f

f

f

»

=

The note “D” above middle “C” is the frequency of “C#” times the twelth-root of two:

[image: image5.wmf](

)

.

1225

.

1

2

2

2

6

2

12

#

12

C

C

C

C

D

f

f

f

f

f

»

=

=

=

Continuing in this fashion, we have for “high C,” or C’:

[image: image6.wmf](

)

.

2

2

12

12

'

C

C

C

f

f

f

=

=

Write code which generates the scale C, C#, D, D#, E, F, F#, G, G#, A, A#, B, C’ at one-quarter second per note.

Write code which prompts for a user input (whistling or singing) for various notes, inputs 8000 samples of the user input, calculates the spectrum using the FFT, finds the frequency of maximum value (using the max() function), subtracts this frequency from what the frequency should be and reports the difference. Finally the code produces the correct tone that should have been whistled (or sung). To input values use the MATLAB command

>> <variable> = input (‘<prompt string>’);

Generating Complex Spectra

A signal can be generated from its spectrum. As an example, suppose that we wished to generate a 1 kHz signal from its spectrum. If we have 8000 frequency samples, the spectrum can be generated by the following code

>> X = zeros(1,8000)

>> X(1001) = 0.5;

>> X(7001) = 0.5;

>> x = 8000*real(ifft(X));

The resultant waveform can be passed to the D/A converter (the speaker of the sound card).

Generate a 2 kHz tone from a 4000-sample spectrum.

Spectra need not consist of single sinewave components. The spectrum of the product of two waveforms can be found using a simple trigonometric identity:

[image: image7.wmf][

]

t

t

t

t

)

cos(

)

cos(

cos

cos

2

1

2

1

2

1

2

1

W

-

W

+

W

+

W

=

W

×

W

Suppose we wished to generate the product of two sinewaves at frequencies 1 Hz and 16 Hz—the resultant spectral components will be at 15 and 17 Hz. If the sampling frequency is 128 Hz, we can generate the spectrum and then generate the signal as follows:

>> X = zeros(1,128);

>> X(16) = 0.25;

>> X(18) = 0.25;

>> X(112) = 0.25;

>> X(114) = 0.25;

>> x = 128*real(ifft(X));

>> t = [0:127]/128;

>> plot(t, x)

Generate a 1000 Hz sinewave multiplied by a 100 Hz sinewave using 8000 samples. Play the sinewave through the soundcard speakers.

Touch-tone telephones use DTMF signaling for dialing information. DTMF stands for dual-tone, multi-frequency. Each button (phone number digit) corresponds to two frequencies: one for the button row and one for the button column. The frequencies are shown in the following diagram:

	
	
	
	f2
	

	
	
	1209 Hz
	1336 Hz
	1477 Hz

	
	697 Hz
	
	
	

	f1
	770 Hz
	
	
	

	
	852 Hz
	
	
	

	
	941 Hz
	
	
	

Write code that accepts a character corresponding to one of the above buttons and generates the appropriate dual-tone frequency. You can test your program by comparing the tones to the tones generated by the telephone (or by using an autodial program with the modem on you computer). To input a character, use the MATLAB command

>> <string> = input (’<prompt string>’,’s’);

Finally, write code that records a tone from the microphone and determines the number. The code should perform an FFT on the signal, and from the prominent peaks, determine the number. You can test this code by placing the microphone next to the earpiece of the telephone and pressing various keys.

2

1

3

4

5

7

*

8

0

6

9

#

_1108735382.unknown

_1108735439.unknown

_1108800343.unknown

_1108738583.unknown

_1108735406.unknown

_1104571522.unknown

