Project #2

Digital Filtering

Digital Filter Creation

A digital filter has a transfer function of the form

[image: image1.wmf].

1

)

(

)

(

)

(

1

1

1

1

0

n

n

m

m

z

a

z

a

z

b

z

b

b

z

X

z

Y

z

H

-

-

-

-

+

+

+

+

+

+

=

=

L

L

This transfer function corresponds to the difference equation

[image: image2.wmf]].

[

]

1

[

]

[

]

[

]

1

[

]

[

1

0

1

m

k

x

b

k

x

b

k

x

b

n

k

y

a

k

y

a

k

y

m

n

-

+

+

-

+

=

-

+

-

+

L

L

There are two types of digital filters: IIR (infinite impulse response) and FIR (finite impulse response). FIR filter transfer functions have no denominator a1 = a2 = … = an = 0, and the impulse response is

[image: image3.wmf]].

[

]

1

[

]

[

]

[

1

0

m

k

b

k

b

k

b

k

h

m

-

+

+

-

+

=

d

d

d

L

IIR filters are generally designed after a analog filter prototypes. FIR filters are generally designed from the parameters desired for the filter. There are two popular ways of designing an IIR filter: (1) the matched z-tranform (otherwise known as impulse-invariant) and (2) the bilinear transformation. Two FIR filter design methods are (1) the Fourier series and windows function method and (2) the Parks McClellan algorithm.

IIR Filters

As mentioned previously, IIR filters are patterned after an analog prototype H(s). This analog prototype can be converted to a digital transfer function by matching the analog impulse response to the digital impulse response:

[image: image4.wmf]].

[

)

(

n

h

t

h

nT

t

=

=

While this method is only good for filters whose critical frequencies are small, it does illustrate the correspondence between poles in for analog transfer functions and poles for digital transfer functions. Let us create a simple analog transfer function

[image: image5.wmf],

1

1

)

(

+

=

s

s

H

in MATLAB:

>> b = 1;

>> a = [1 1];

The frequency response is found by

>> [h w] = freqs(b,a);

>> plot (w, abs(h));

The poles and zeroes are found by

>> z = roots(b);

>> plot (real(z),imag(z),’o’);

>> p = roots(a);

>> plot (real(p),imag(p),’x’);

We may now transform this analog transfer function to a digital transfer function using the matched z-transform

>> [bz az] = impinvar(b,a,2/(2*pi));

The value 2/(2) is the sampling frequency in Herz corresponding to a radian sampling frequency of 2 rad/sec. We may then find the frequency response as well as plot the zeroes and the poles:

>> [h w] = freqz(bz,az);

>> plot (w, abs(h));

>> z = roots(bz);

>> plot (real(z),imag(z),’o’);

>> p = roots(az);

>> plot (real(p),imag(p),’x’);

Transform the following analog transfer function for c = 0.01, 0.1, and 0.25 to digital transfer functions using the matched z-transform method.

[image: image6.wmf].

1

1

)

(

+

=

c

s

s

H

w

Plot the frequency response and the poles and zeroes in each case. Use a sampling frequency of one rad/sec. Compare the filter frequency responses. A good way of comparing the frequency responses is to “normalize” the freuquency responses so that the gain at =0 is equal to one:

>> [h w] = freqz(bz,az);

>> h = h/h(1);

>> plot (w, abs(h));

You may also place all three frequency plots on one graph by using the MATLAB command hold on after the first plot—subsequent plots will be placed on the same graph—use hold off to turn-off this feature. You might also wish to set the limits of the horizontal and vertical axes for the plots to 0 to  for horizonal and 0 to 2 for vertical:

>> axis([0 pi 0 2]);

Repeat the above exercise using the bilinear transformation: instead of the MATLAB impinvar function use the bilinear MATLAB function.

Find the frequency response and plot the poles for a second-order Butterworth filter. Use the MATLAB command

>> [b,a] = butter(2,1,’s’);

and transform the analog filter coefficients using the bilinear MATLAB function. Also plot the digital poles and the digital zeroes. Repeat for a fifth-order and a tenth-order Butterworth filter.

FIR Filters

Having no analog prototype, FIR filters are designed differently from IIR filters. The Fourier series (and windows function) method tries to approximate the desired frequency response with a truncated Fourier series in frequency domain:

[image: image7.wmf].

)

(

å

-

=

»

r

r

n

jn

n

j

d

e

c

e

H

w

w

[image: image8.wmf].

)

(

2

1

ò

-

=

p

p

w

w

p

d

H

c

d

n

Find the coefficients cn of a digital filter whose cutoff frequency is c, where 0<c <. Use the above integral expression. Create a MATLAB array c that contains these coefficients. If c=/2 and r=5, the MATLAB code will look like this:

>> r=5;

>> n=-r:-1;

>> cm = sin(n*pi/2)./(n*pi);

>> n=:1:r;

>> cp = sin(n*pi/2)./(n*pi);

>> c = [cm 0.5 cp];

Test-out this filter by performing frequency-response plots (use freqz with az=1 and bz=c). Plot the frequency response plots for r=10 and 20 for c=/2 and c=/4. Repeat after applying a Hamming window—weight, or multiply, the coefficients (bz=c) with Hamming coefficients:

>> w = hamming(2*r+1)’;

What does the Hamming window do to the filter response? (The window does two things to the filter response—one good one bad.)

Plot the phase response for these FIR filters (c=/2 and c=/4 without the Hamming window) using the commands

>> [h w] = freqz(c,1);

>> plot (w, angle(h));

Examine the phase in the bandpass region (from 0 to c). The phase should be linear, but the plot will show jagged lines. Explain these plots: why are the plots jagged rather than straight lines?

_1104208541.unknown

_1104210414.unknown

_1104370476.unknown

_1104370132.unknown

_1104208948.unknown

_1104207924.unknown

_1104208074.unknown

_1104207718.unknown

