CHAPTER 2

AFFINE CONNECTIONS;
RIEMANNIAN CONNECTIONS

1. Introduction

A fundamental event in the development of differential geometry

was the introduction, in 1917, of the Levi-Civita parallelism (see
Levi-Civita [LC]). For the case of surfaces in R3, an equivalent idea
can be described in the following manner. Let S C R3 be a surface
and let ¢:I — S be a parametrized curve in S, with V:T — R3 a
vector field along ¢ tangent to S. The vector ‘—f}:—(t), t € I, does not
in general belong to the tangent plane of S, T¢(¢yS. The concept of
differentiating a vector field is not therefore an “intrinsic” geometric
notion on S. To remedy this state of affairs we consider, instead
of the usual derivative %(t),' the orthogonal projection of %(t)
on TyyS. This orthogonally projected vector we call the covariant
derivative and denote it by %(t). The covariant derivative of V is
the derivative of V as seen from the “viewpoint of S”.

A basic point is that the covariant derivative depends only
on the first fundamental form of S and is therefore a concept which
can be considered within Riemannian geometry. In particular, the
notion of covariant derivative permits us to take the derivative of
the velocity vector of ¢, which gives the acceleration of the curve ¢
in S. It is possible to show that curves with zero acceleration are
precisely the geodesics of S and that the Gaussian curvature of-S
can be expressed in terms of the notion of the covariant derivative.

We say that a vector field V' along c is parallel if %TV
Conversely, starting from the notion of parallelism it is possible to
recover the notion of covariant derivative (Cf. Exercise 1 of this
chapter). These notions are then equivalent to each other.

Although nowadays it is preferable to start from the notion
of covariant derivative, historically the idea of parallelism came first.
For surfaces in R3, parallelism can be introduced in the following
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manne.r. Cor}sider a family of planes tangent to § along the cu

¢. This fa@ly determines a surface E, enveloping these tan I‘V:
planes, which possesses the property that it will be tangent o
along the curve ¢ and whose Gaussian curvature K = Oge(Cf tc’MS

do Carmo [dC 2] pp. 195-197). It j -
parallelism along ¢ def )- 1t is not difficult to show that the

derivative is the same

.to be locally isometric to s plane. Since parallelism is invariant b
1sforllrgletr_',(ri Vslfle can perform it “euclideanly” in the isometric imagz
o and then bring it back to S. This
. . was the construction
classically to c%ef.ine parallelism. (M. do Carmo [dC 2] p. 244) It“;?ﬁ
turfl ou't that it is preferable, technically, to work with the ¢ vari
derivative. oerant
The notion of covariant derivati
| vative has many im
sequences. It makes it clear that the two b dens of sodon

i and curvature can be defined in more genera,
- of Riemannian manifolds. To this end it suffices that one be able to

deﬁfle a notion of derivation of vector fields with certain propert;
’(v&thlch nowadays we call an affine connection, Cf. Deﬁnitri)onp;3 11618c
Ehls chap‘ter). This has stimulated the creation of many diﬁ'e.r ot
,_geome.trlc structures” (on differentiable manifolds) more ge e:l
'than Rlerr}annian geometry. In the same way as met olides
g}ec;rgjtr); Is a particular case of affine geometry and more generally
ective geometry, Ri i i i
more general goometre sirucpures © o > PorHear cas of
G)pment\;Ve 8:; Iilott going to enter into the details of these devel-
P . Interest in affine connections rests in the fact (Cf.
leorem '3.6 of this chapter) that a choice of a Riemannian metri
1 & manifold M uniquely determines a certain’affine connection 211(1:

+ We are then i i i i i
i able, in this fashion, to differentiate vector fields

Affine Connections

“Us indicate by X (M) the set of al] vector fields of class ¢

and b i i
ey A}' D(M) the ring of real-valued functions of class Co°
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50 Affine and Riemannian connections [Chap. 2
2.1 DEFINITION. An affine connection V on a differentiable man-
ifold M is a mapping

V: X (M) x X(M) - &(M)

which is denoted by (X,Y) v xY and which satisfies the follow-
ing properties : :
) VixsgrZ = fVxZ+gVyZ.
i) Vx(Y+2)=VxY +VxZ.
i) Vx(fY)=fVxY + X(f)Y,
in which X,Y,Z € A(M) and f,g € D(M).

This definition is not as transparent as that of Riemannian
structure. The following proposition, nevertheless, should clarify the
situation a little.

2.2 PROPOSITION. Let M be a differentiable manifold with an
affine connection V. There exists a unique correspondence which
associates to a vector field V along the differentiable curvec: I — M
another vector field %tz along c, called the covariant derivative of V
along c, such that:

a) F(V+W)=Lr+Br.

b) 2(fV) =4V + f2Y, where W is a vector field along ¢ and

f is a differentiable function on I.

c) If V is induced by a vector field Y € A(M), ie., V(t) =
Y (c(t)), then BY =V 4./4,Y. .
2.3 REMARK. The last line of (¢) makes sense, since VxY (p)
depends on the value of X (p) and the value Y along a curve, tangent
to X at p. In effect, part (iii) of Definition 2.1 allows us to show that
the notion of affine connection is actually a local notion (cf. Rem. 5.7
of Chap. 0). Choosing a system of coordinates (z1,...,z,) about p

and writing
X=YzX:, Y=3 yXj,
i J
-where X; = 3%-’ we have

VXY = Zﬂiivx; (Z ijj) = Ziviijxin + Z:z:,-X,-(yj)X-.
i J ij ij
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Setting Vy. X, = Y. Tk x :
i i Wi .
tiable functionjs and ghatj t» e conclude that the I} are differen-

VxY =3 O zaTh + X(y)) X,
k iy

which proves that V¥ (p) 4 .
tives X (yx) (p) of yy )bfy ()‘?) epends on z;(p), yx(p) and the deriva-

2.4 REMARK. The proposition above shows that the choice of an

furnishes, therefore,

in particular, it will then be 0ssib])
a curve in M. ? ¢ to spea

g vectors along curves;
k of the acceleration of

Proof of Proposition 2.2 L
- -%. Let us suppose initially th
ists a correspondence satisfying (a), (b) and (c}),.t iztt}f'r IeJ GJZ

~ R® > M be a system of coordinates with c(I) N x(0) # ¢ and

let(zjét)Lmz(g),...,mn(t)) be the local expression of ct),t € I
i = 3z;- Then we can express the field V locally ’as |4 -

NS = i
| VX, j= 1,...,n, where v =v(¢) and X; = X;(c(2)).

By a) and b), we have

DV_ dvd
dt — & gr
J

X, + zvadff.
J

By ¢) and (i) of Definition 2.1,

DX; _v
T __Mdc/dej = V@%’&)X-
_ N\ dzi -
= : —dt—inXj, 1,71 = 1,...,7?..

Therefore,

DV dv’ dz; .
& =2 Xt v,
1,7

The expression (1) shows us that if there is a correspondence

satisfyi iti
- fying the conditions of Proposition 2.2, then such a correspon-

ence is unique,
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To show existence, define —%tx in x(U) by (1). It is easy to
verify that (1) possesses the desired properties. If y(W) is another
coordinate neighborhood, with y(W)Nx(U) # ¢ and we definePdTV in
y(W) by (1), the definitions agree in y(W)Nx(U), by the uniqueness
of Z¥ in x(U). 1t follows that the definition can be extended over
all of M, and this concludes the proof. [

The concept of parallelism now follows in a natural manner.

2.5 DEFINITION. Let M be a differentiable manifold with an affine
connection V. A vector field V along a curve c¢:I — M is called
parallel when DTt‘f =0,foralltel.

2.6 PROPOSITION. Let M be a differentiable manifold with an
affine connection V. Let c:I — M be a differentiable curve in M and
let V, be a vector tangent to M at c(t,), t, € I (i.e. V, € Ty, )M).
Then there exists a unique parallel vector field V along c, such that
V(t,) = Vo, ((V(t) is called the parallel transport of V' (t,) along c).

Proof. Suppose that the theorem was proved for the case in which
¢(I) is contained in a local coordinate neighborhood. By compact-
ness, for any t; € I, the segment c([t,,t1]) C M can be covered by a
finite number of coordinate neighborhoods, in each of which V can
be defined, by hypothesis. From uniqueness, the definitions coincide
when the intersections are not empty, thus allowing the definition of
V along all of [t,,%1].

We have only, therefore, to prove the theorem when ¢(I) is
contained in a coordinate neighborhood x(U) of a system of coordi-
nates x: U C R™ — M. Let x~!(c(t)) = (z1(2),...,zn(t)) be the lo-
cal expression for c(t) and let V, = 3 v, X;, where X; = %(c(to)).

Suppose that there exists a vector field V' in x(U) which is
parallel along ¢ with V(¢,) = V,. Then-V = 5" 07 X, satisfies

Dv

dt

Putting Vx,X; = Y., 't Xx, and replacing j with k in the first
i“*2 k * ij

sum, we obtain

DV dv* 4T g
AR R TE

4,3
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The system of n differential equations in vk(¢)
b

dv* Z
() O _—dt + P"ijd—tz, k=1,..-,n,
)

bossesses a unique soluti isfyi initi iti
vk, Tt then fol?ows fc)hlzla,tm?f 53'51;;}"111:1 ° ttl;l © Initial conditions vk(t") =
Toll , §ts, 1t 1s unique. Moreover., s;
the system is linear, any solution is defined for all ¢ € T ’wsllllilg}?
?

then proves the existence i .
properties. [J (and uniqueness ) of V with the desired

3. Riemannian Connections

3.1 DEFINITION. Let M be a differ
t<::ong1ec1:1on V.and a Riemannian metric {,). A connection is said
0 be compatible with the metric (, ), when for any smooth curve

¢ and any pair of parallel
(P,P') = constant. vector fields P and P’ along ¢, we have

tli:iirgtisn- 3.1is justg?ed by the following proposition which

: . 1s compatible with (, ), then we are g i
entiate the inner product by the usual “product rulo:”able fo differ-
3.2 PROPOSITION. :
tion V on M js comp
fields V and W alon

entiable manifold with an affine

L('?t M .be a Riemannian manifold. A connec-
atible v'vzth a metric if and only if for an y vector
g the differentiable curve ¢: J — M we have

d DV DW
dt<V’W>= <-E’W>+<V’7>’ tel

w;oﬁ)fé I; I’SI\}C:bvmus that equation’ (3) implies that V is compatible
i baisié {Perefore, let us prove the converse. Choose an orthonor-
l(to), e ,Pﬂ.(tO)} of T_'r(to) (M), tO e I. Using Propo_

lon 2.6, we can extend the vectors P;(t,),i = 1,...,n along ¢
ceoym,

Because V is compatible with the metric,

L)y, Po(t)} is an orth i
Fherciore wg o) san onormal basis of Toy(M), for any t ¢ I.

V=>"p,

W=ZwiPi,

t=1,...,n
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where v' and wt are differentiable functions on I. It follows that

DV dvt DW dw?
IR 2r 2 b Vi

Therefore,

DV DW dvt , dwt
(?7W)+(V>T)_Z{E{w + dt v}

i

O

3.3 COROLLARY. A connection V on a Riemannian manifold M is
compatible with the metric if and only if

Proof. Suppose that V is compatible with the metric. Let p € M
and let ¢:I — M be a differentiable curve with c(t,) = p, t, € I,
and with -Z—f iy, =X (p). Then

X@NY2) = 02| = (Vxg¥i 2y + (%, Vxn Dy

to
Since p is arbitrary, (4) follows. The converse is obvious. O

3.4 DEFINITION. An affine connection V on a smooth manifold M
is said to be symmetric when

(5) VxY -VyX =[X,Y] forall X,Y e X(M).

3.5 REMARK. In a coordinate system (U,x), the fact that V is
symmetric implies that for all 7,7 =1,...,n,
a
6.’15,"
which justifies the terminology (observe that (5°) is equivalent to the
fact that T'}; = T,).

We are now able to state the fundamental theorem of this
chapter.

(5’) thXJ - VXin = [XI’XJ] = 0’ Xi =

sec. i i
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3.6 Theorem. (Levi-Civita). Given a Riemannian manifold M

there exists a unique affi . I
ditions:. q ne connection V on M satisfying the con-

a) V is symmetric.
b) V is compatible with the Riemannian metric.

Proof. Suppose initially the existence of such a V. Then
(6) X{Y,2) =(VxY,Z) + (Y, Vx 2),

™ Y(Z,X) = (VyZ,X) + (2, Vy X).

®) ZX,Y) = (VzX,Y) + (X, VzY).

Adding (6) and (7) and sub i i
symmetny of 9 (M su ﬁract1ng (8), we have, using the

X{Y,Z)+Y(Z,X) - Z(X,Y)

Therefore

O EYYX) =S X(4,2)+ V(2 X) - 2(x,v)

—(X,2},Y) - (Iv, 2), X) - (x, V), 2)}.

The expression (9) shows that V is uniquely determined from

’the metric (, ). Hence, if it exists, it will be unique.

: To prove existence, define V by i

. , y (9). It is easy to verif

V is well-defined and that it satisfies the desired corf,ditionesljl yEtlhat
: .7 REMARK. The conne
to, fro
M.

ction given by the theorem will ber
lon give eferred
T DOW on, as the Levi-Civita (or Riemannian) connection on

Let us conclude this cha it
: . pter by writing part of what
i.‘;ll%own abeve 1nka coordinate system (U,x). It is customary to ‘2’;?
¢ functions T'¥; defined on U by Vx.X; = 3, TE Xy, the coeffi-
co¢nts o.f the connection V on U or the C’hm‘stoﬁe?syn’zbols of the
nnection. From (9) it follows that
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= (X, X;). :
where gS?nce <th:; mJatrix (9km) admits an inverse (gkm), we obtain

that

1 ] e 9 } km.
k

The equation (10) is a classical expression for the Chris.toffe}b sytrlrll(;
bols of the Riemannian connection in terms of the g;; (given by

etric). . _
" )Observe that for the Euclidean space R"™, we }‘1ave I‘,]. 0
In terms of the Christoffel symbols, the covariant derivative

has the classical expression

DV dvk k ;dz; x
&=L w TR g (X
k i,J

] AN the usual
which follows from (1). Obssrv: that }fltc h(i;f‘f,e(:)lii eﬁ:})::(;hristoffel
ivative in Euclidean space by terms w . istof
;i;:rll“tl)a(l)lsv Therefore, in Euclidean spaces the covariant derivative

coincides with the usual derivative.

EXERCISES

1. Let M be a Riemannian manifold. Consider the mapping

P =Py, Te )M = Ty M

defined by: Py, :(v), v € Ty,)M, is the vector obtﬁineih‘tz
parallel transporting the vector v along the curve c. Show hat
P is an isometry and that, if M is oriented, P preserves 7

orientation. ' .
Let X and Y be differentiable vector fields on a} Rlemanmae
manifold M. Let p € M and let ¢: I — M be an integral curv
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of X through p, i.e. c(t,) = p and de - x (c(t)). Prove that
the Riemannian connection of M is :

(Vx¥)(@) = (P52 (Y (elt)))

t=t,

where P, ,: Tty M — Tty M is the parallel transport along
¢, fromt, to ¢ (this shows how the connection can be reobtained
from the concept of parallelism).

Let f: M~ — 37" be an immersion of 5 differentiable mani-
fold M into a Riemannian manifold 77, Assume that M has the
Riemannian metric induced by f (cf. Example 2.5 of Chap. 1).
Let pe Mandlet U ¢ M1 be a neighborhood of p such that
f(U) € M is a submanifold of 7. Further, suppose that X,y
are differentiable vector fields on f(U) which extend to dif-
ferentiable vector fields X,Y on an open set of M. Define
(VxY)(p) = tangential component of Vy?(p), where V is the
Riemannian connection of M. Prove that V is the Riemannian
connection of M.

Let M? C R? be a surface in R3 with the induced Riemannian
metric. Let ¢:1 — M be 3 differentiable curve on M and let V
be vector field tangent to M along ¢; V can be thought of as a
smooth function V: I — R3, with V(t) € TyM.
a) Show that V is parallel if and only if % is perpendicular
to Te(y) M C R3 where % is the usual derivative of V: J —
R3

b) If 82 ¢ R? is the unit sphere of R3, show that the velocity
field along great circles, parametrized by arc length, is 3
parallel field. A similar argument holds for S™ ¢ R,

In Euclidean Space, the parallel transport of 5 vector between

. two points does not depend on the curve Jjoining the two points.

Show, by example, that this fact may not be true on an arbi-

- trary Riemannian manifold.

“Let M be 3 Riemannian manifold and let p be a point of M.
-Consider a constant curve f:I — M given by f(t) = p, for
allt eI Let V be a vector field along f (that is, Vis a

differentiable mapping of I into Tp,M). Show that '?Ttv =
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that is to say, the covariant derivative coincides with the usual
derivative of V: I — T, M.

Let S2 ¢ R3 be the unit sphere, ¢ an arbitrary parallel of
latitude on S? and V, a tangent vector to S? at a point of c.
Describe geometrically the parallel transport of V, along c.
Hint: Consider the cone C tangent to S? along c¢ and show
that the parallel transport of V, along c is the same, whether
taken relative to S? or to C.

Consider the upper half-plane
R} = {(z,y) e R%y > 0}

with the metric given by g11 = go2 = ;17, g12 = 0 (metric of
Lobatchevski’s non-euclidean geometry ).
a) Show that the Christoffel symbols of the Riemannian con-
nection are: I'ly =Tf, =T3, =0, T} =g,
T =—3.
b) Let v, = (0, 1) be a tangent vector at point (0,1) of R2¥
(vo is a unit vector on the y-axis with origin at (0, 1)).
Let v(t) be the parallel transport of v, along the curve
z =t,y = 1. Show that v(¢) makes an angle ¢ with the
direction of the y-axis, measured in the clockwise sense.
Hint: The field v(t) = (a(t), b(t)) satisfies the system (2) which
defines a parallel field and which, in this case, simplifies to

% +T%a=0.

Taking a = cosf(t), b = sinf(¢) and noting that along the
given curve we have y = 1, we obtain from the equations above
that %% = —1. Since v(0) = v,, this implies that 6(t) = n/2—t.
(Pseudo-Riemannian Metrics). A pseudo-Riemannian metric
on a smooth manifold M is a choice, at every point p € M, of
a non-degenerate symmetric bilinear form (, ) (not necessarily
positive definite) on T, M which varies differentiably with p.
Except for the fact that (, ) need not be positive definite, all
of the definitions that have been presented up to now make

sense for a pseudo-Riemannian metric. For example, an affine
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gzn;;ctignﬁon M compatible with a pseudo-Riemannian metric

Satishes equation (4) ; if, in additi

connection is said to be syr’nm’etrz'c. Hiom (9) holds, the affine
a) Show that the theorem of Levi-Civita extends to pseudo-

tF}llema.nnlam Ipetrics. The connection so obtained is called
e pseudo-Riemanniagn connection.

b) Introduce a pseudo-Riemannian metric on R*+!

the quadratic form: by using

Q(zo, ... 1Tn) = —(x,)% + ()% +... + (zn)?,
(Zoy...,z,) € R,

Show that the parallel transport corres
Levi-Civita connection of th
usual parallel transport of R
metric is called the Lorents
naturally in relativity).

: : ponding to the
IS metric coincides with the

ntl1 (?his pseudo-Riemannian
metric; for n = 3, it appears




CHAPTER 3

GEODESICS;
CONVEX NEIGHBORHOODS

1. Introduction

After fixing the basic terminology, we pass to the study of two fun-
damental concepts of Riemannian geometry, namely, geodesics and
curvature. This chapter introduces the notion of a geodesic as a
curve with zero acceleration. In the next chapter, we initiate the
study of curvature.
One of the objectives of the present chapter is to show that
a geodesic minimizes arc length for points “gufficiently close” (in
3 sense to be made precise); in addition, if a curve minimizes arc
length between any two of its points, it is a geodesic. To prove these
facts we need various concepts and theorems which will be useful
later. .
In Section 2 we introduce the tangent bundle TM of a dif-
ferentiable manifold M which allows us to reduce the local study of
geodesics on M to the study of the trajectories of a vector field (the
geodesic field) on TM. In Section 3, we introduce the exponential
map of an open set in TM to M which is simply a way of “collecting”
all of the geodesics of M into a unique differentiable mapping. This
notation is extremely useful, and, permits us, for example, to apply
the inverse function theorem to show that any point of M posseses
_a neighborhood W such that any two points of W can be joined by
a unique geodesic which [minimizes arc length (see Theorem 3.7).
The concept of a geodesic, as a Curve that minimizes the
distance between two nearby points, is rather old. For surfaces in R3,
the geodesics can be characterized as those curves c(s) (where s is
arc length) for which the acceleration ¢/ (s) in R3 is perpendicular to
the surface (therefore, the acceleration of ¢ “from the viewpoint” of
the surface is zero). Such a characterization was apparently known,
at least for convex surfaces, in 1697 by Johann Bernoulli, and the
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equations of geodesics for surfaces of the f

. ' ‘ orm f(z,y,2) =0
((;(f)n(s}lderec}(;)y] Euler in 1732. Nevertheless, it was only Wit%l the WZ?E

auss [Ga] in 1827 that the relationshi

p between the geodesi

and the curvature of a surface was established (Cf. Intriducisif;

to Chap. 1). This relationship i
. p is fund : .
various forms throughout this book. ndamental and will appear in

2. The geodesic flow

In what follows, M will be a Riemannian manifold, together with

" its Riemannian connection.

2.1 DE.FH}I)ITL_O—IN. A parametrized curve v: I — M is a geodesic at
to e Tif Z(5H) =0 a.t the point t,; if v is a geodesic at t, for all
tel, we say that + is a geodesic. If [a,b] C I and :1 _,_, M i
a ge9de31c, the restriction of v to [a, b] is called a geodfeyzlei ”
joining vy(a) to v(b). ' ¢ segment
At times, b, . i
ot oo, ,asyaaél;zzz ;i .language, we refer to the image v(I),
If v: I — M is a geodesic, then

ﬁl_(d_'y d_'Y)_ (Bd'Y dy
dww " qga ="

- that is, the length dy j
, gth of the tangent vector 5 is constant. We assume,

d
_from now on, that ‘7‘—'}‘ = ¢ # 0, that is, we exclude the geodesics

~which reduce to points. The ar
X . . . C length ] Of Startl
“origin, say t = t,, is then given by 7 ng from a fixed

s(t) = /tt 2—7 dt = ¢(t - to).

‘élf;zfc;;e, the parame.ter of a geodesic is proportional to arc length
7 e parameter is actually arc length, that is, ¢ = 1, we sa);
’

1(t) = (:1(2), ..., Zn(?)).




