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Differentiable manifolds [C]

structure (R, x;) and (R, x3) are distinct, they det

diffeomorphic differentiable manifolds.
(The orientable double covering). Let M™ be a non-ori
differentiable manifold. For each p € M, consider the
of bases of T,M and say that two bases are equivalen
are related by a matrix with positive determinant. T}
equivalence relation and separates B into two disjoint s
O, be the quotient space of B with respect to this equi
relatlon O, € O, will be called an orientation of T _

M be the set
M ={(p,0p);p € M, 0, € Op}.

Let {(Ua,Xq)} be a maximal differentiable structure._
and define X,: U, — M by

8 9.

X @ & = @ e a - .o e —_——
Xa(ul,.. . ,'U:n) (XQ('U]) 7un)1 [611:?, 7aua Yy

where (uf,...,u%) € Uy and [5%, ,-a%] denotes th

ment of O, determined by the basis { Fuz- ,3—}
that:

(a) {Ua;%a)}isa differentiable structure on M and th
manifold M so obtained is orientable.

(b) The mapping m: M — M given by m(p,Op) = p i
entiable and surjective. In addition, each p € M
neighborhood U C M such that = 1(U )=WUV,
V; and V; are disjoint open sets in M and 7 r¢
toeach V;,1=1,2,is a diffeomorphism onto U. Fo
reason, M is called the orientable double cover of
The sphere S? is the orientable double cover of P(
the torus T? is the orientable double cover of the:
bottle K.

CHAPTER 1

RIEMANNIAN METRICS

Riemannian geometry was a natural development of the
eometry of surfaces in R3. Given a surface S C R3, we
1 'way of measuring the lengths of vectors tangent to
he inner product (v, w) of two vectors tangent to S at a
is simply the inner product of these vectors in R3. The
ute the length of a curve is, by definition, to integrate
- its velocity vector. The definition of ( , ) permits us
ot only the lengths of curves in S but also the area of
; as well as the angle between two curves, and all the
" ideas used in geometry. More generally, these notions
efine on S certain special curves, called geodesics, which
ollowing property: given any two points p and ¢ on
ufficiently close (in a sense to be made precise later,
), the length of such a curve is less than or equal to
f any other curve joining p to q. Such curves behave,
ations, as if they were “the straight lines” of S, and,
see later, play an important role in the development of

ve that the definition of the inner product at each point
lds, equivalently, a quadratic form I, called the first

form of S at p, defined in the tangent plane T,S by

» U ET,S.

rucial point of this development was an observation
auss in his famous work (see Gauss [Gal]) published in

I this work, Gauss defined a notion of curvature for surfaces,
ures the amount that S deviates, at a point p € S, from

lane at p. In modern notation, Gauss’ definition can be
he following terms. Define a mapping g: S — S§2? C R3
unit sphere 52 of R3, associating to every p € S a unit
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i 1d
. if S were orientable then g wou
N(p) € S? normal to Tp,S; 1 : : :
‘{)ths(l)e:‘ll-dgiled and differentiable on S. DtlllrmgdGa;lss’du(r-r:le,t :il:hm?lt
- rstood (1 ,

i ientation of surfaces was not weil-un e ;
:(:sln?tf 3:1til 1865 that Mobius presented his famous examp(l‘e,i ;:lsln
known today as the Mébius band), and so g was d'eﬁned on . pS e
of S. In any case, g is differentiable and it 1s poss1_b1e then : 20 21 -
of it.s differential dgp: TpS — Tg(p)5’2. Since N (p) ’}s no;rglaand t;,m;
we can identify the two vector spaces TpS and o) !
it makes sense to speak of the determinant of the linear n(;atril ¢ t_f],l,t
Gauss defined his curvature as K(p) = det(dgp) and s¥1oweduced i
agreed with the product of the principal curvatures intro

0 by Euler. .

e };’erhaps it is worthwhile mentioning that Euler <'1eﬁ1-1ed t}ﬁ:

rincipal curvatures k, and kg of a surfa§e S by. considering the

. rvature k, of curves obtained by intersecting S with planes nor f
Eg Satp a;d taking k) = maxkn and ko = min k,. At theft;:m(; I?d
Gauss it was not at all clear that one function or thg other (())nSi(li and

iti f curvature. Gauss ¢
1d be an adequate definition o re. :
fﬁ;tw t?}ia facts which he had obtained about K justified the choice of
— ki ko as the curvature of S. .

“ lT;e facts that Gauss alluded to were the followm%. In ?}112

first place, the curvature, as defined above, depends on (}1’ on e

manner oi3 measuring in S, that is, only on the ﬁrst'funl a;n:,med

form I. Secondly, the sum of the interior angles of a triangie ol d

l;)y geo.desics differs from 180° by an expression that depends only o

iangle.
urvature and the area of the triang .
the Everything indicates that Gauss perceived very cl}(laarfly té}:
profound implications of his discovery. II; fZCt" ((;n?f(:i 2 f—‘?ft }1111; >
i ' time was to declde
mental problems during Gauss _ ; e A P
i i ight line and a point not on
tulate of Euclid (“Given a straig . it not on the
i i i h the point which does
then there is a straight line throug doos o e
i i i dent of the other postulates ol &
the given line”) was indepen:  oth X o o
i i diate applications, the qu
etry. Although without immediate . quesion o
i ical implicati f primary importance. Larler,
to philosophical 1mp11cat10ns? . e e
i id’s fifth postulate is equlv
been established that Euclid’s . Sy
i i les of a triangle equals
that the sum of the interior ang : . i
f?ﬁi disacovery of Gauss implied, among other things, that it wou

e . hat
be possible to imagine a geometry (at least in .dlmex}smn tw%)it'; e
depended on a fundamental quadratic form given in an ar
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manner (without regard to the ambient space). In such a geometry,
defining straight lines as geodesics, the sum of the interior angles
of a triangle would depend on the curvature and, as Gauss actually
verified, its difference from 180° would be equal to the integral of
the curvature over the triangle. Gauss, however, did not have the
necessary mathematical tools available to develop his ideas (what he
lacked was essentially the idea of a differentiable manifold) and he
preferred not to discuss this topic openly. The actual appearance of
a non-euclidean geometry was due, independently, to Lobatchevski
(1829) and Bolyai(1831).
The ideas of Gauss were taken up again by Riemann in 1854
(see Riemann [Ri]), even though he was still without an adequate
definition of a manifold. Using intuitive language and without proof,
‘Riemann introduced what we call today a differentiable manifold of
dimension n. He further associated to every point of the mani-

- fold a fundamental quadratic form and then generalized the idea of
-Gaussian curvature to this situation (cf. Chap. 4). Furthermore, he

stated many relations between the first fundamental quadratic form

~-and the curvature that were only proved decades later. The read-
- ing of his work makes it clear that Riemann was motivated by the
~. fundamental question implicit in the development of non-euclidean

geometries, namely, the relationship between physics and geometry.
It is curious to observe that the concept of differentiable man-

‘ifold, necessary for the formalization of the work of Riemann, only

appeared explicitly in 1913 in the work of H. Weyl which made

‘precise another of Riemann’s audacious concepts, namely, Riemann
surfaces. But that is another story.

~ Due to the lack of adequate tools, Riemannian geometry as
uch developed very slowly. An important outside source of stimula-
ion was the application of these ideas to the theory of relativity in
916. Another fundamental step was the introduction of the paral-
elism of Levi-Civita. We shall return to this topic in the next chap-
Our object here is not to write a complete history of Riemannian
ometry but simply to trace its origin and supply motivation for
18t is to follow.

‘Our point of departure will be a differentiable manifold on
ich we introduce at each point a way of measuring the length
angent vectors. This measurement should change differentiably

point to point. The explicit definition will be given in the next
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section.
For the remainder of this book, the differentiable manifolds
considered will be assumed to be Hausdorff spaces with countable

bases. “Differentiable” will signify “of class C*°”, and when M™ =
M denotes a differentiable manifold, n denotes the dimension of M.

2. Riemannian Metrics

2.1 DEFINITION. A Riemannian metric (or Riemannian structure)

on 3 differentiable manifold M is a correspondence which associates
to each point p of M an inner product { , ), (that is, a symmetric,
bilinear, positive-definite form) on the tangent space Tp,M, which
varies differentiably in the following sense: If x:U C R" — M
is a system of coordinates around p, with x(z1,z2,...,2,) = ¢q €
x(U) and 32:(q) = dxg(0,...,1,...,0), then (32:(g), 32-(a))q =
9ij(Z1,...,Ty) is a differentiable function on U. :

It is clear this definition does not depend on the choice of
coordinate system.

Another way to express the differentiability of the Rieman-
nian metric is to say that for any pair of vector fields X and Y, which
are differentiable in a neighborhood V of M, the function (X,Y) is
differentiable on V. It is immediate that this definition is equivalent
to the other.

It is usual to delete the index p in the function { , ), when-
ever there is no possibility of confusion. The function g;; (= g;i) is
called the local representation of the Riemannian metric (or “the g;;
of the metric”) in the coordinate system x:U C R™ — M. A differ-
entiable manifold with a given Riemannian metric will be called a

Riemannian manifold.

After introducing any type of mathematical structure, we
must introduce a notion of when two objects are the same.
2.2 DEFINITION. Let M and N be Riemannian manifolds. A
diffeomorphism f: M — N (that is, f is a differentiable bijection
with a differentiable inverse) is called an isometry if:

(1) (u,v)p = (dfp(u), dfp(v)) s(p), for all p € M, u,v € T,M.
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2.3 DEFINITION. Let M and N be Ri
' : . e Riemannian manifold
:;ikllffere'ntlable. mapping f: M — N is a local isometry at poe SM 11}’
1ere 1s a neighborhood U ¢ M of D such that f:U — fO) i
diffeomorphism satisfying (1). . Jie
It is common to say that a Rie i
‘ ; : mannian manifold M is |
' hrzc to a Riemannian manifold NV if forevery pin M thelfe ;C{:Ztllsl
a neighborhood U of p in M and a local isometry f: U7 — fU)c N

What follows are some non-trivi
-t .
Riemannian manifold. rivial examples of the notion of

-2d.4 ]iEﬁXAMPI.,E. The almost trivial example. M = R"™ with 8-

z:rj)eildvjv.'lth g,-. = (0,...,1,-...,0). The metric is given a}:;r

Ri,, i) = bij. R"™ is called Euclidean space of dimension n and the
emannian geometry of this space is metric Euclidean geometry

2.5 E')XAMPLE: Immersed manifolds. Let f: M™ — jyn+k be an im
mersion, that is, f is differentiable and dfp: T,M — TN is injec-
o -

- tiveforall pin M. If N has s Riemannian structure, f induces a Rie-

mannia; struct1‘1re on M by defining (u,v), = (dfp(u), df (v))
u,v € T,M. Since dfpis injective, (,)p is positive deﬁnfte. f’lg‘ll:l)e;

r, K;hf:r conditions of Definition 2.1 are easily verified. This metric on
is then called the metric induced by f, and f is an isometric

immersion.

A particularly important cas
. , € o i '
zntlible function h: Mtk _, Nk 4n4 Cqu:'SA‘;’ k:: nav::gklllz;: 33;1::31;
» . . . O
: g{tn at is, ;ihp.TpM : Ty p)N is surjective for all PERI(). 1t
sk Z-WII:eltl en that_h (9) C M is a submanifold of A of dimen-
: hence, w . ) . e
s B € can put a Rleménnlan metric on it induced by the
,,-‘ For ;:xample, le? h:R™ — R be given by h(zy, ..., z,)
R"=;;:.i‘_‘ + 'I;henl(; is grelgula,r value of h and h=10) = {z €
LT T Ty =11 = 8" s the unit sphereof R™ Th i
=S . The
mduced from R™ on §n-1 jg called the canonical metric of nglt 1‘ N

6 EXAMPLE. Lie )

. ; groups. A Lie group is a group G with i
,.en)tlable itlructure such that the mapping G x Gp—> C;’v lgiv:ndll)f-
,z gn:frxy , .:1:, ¥ € G, is differentiable. It follows then that tran‘sr>j
o 'Gom g’ze Lleft L; and translations from the right R given
e —_ = : : Fe

" v Lz(y) =zy; R,: G — G, R.(y) = yz are diffeomor-
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We say that a Riemannian metric on G is left invariant if
(u,v)y = (d(Lz)yu,d(Ls)yv) 1 (y for all z,y € G, u,v € TG, that
is, if Ly is an isometry. Analogously, we can define a right invariant
Riemannian metric. A Riemannian metric on G which is both right
and left invariant is said to be bi-invariant.

We say that a differentiable vector field X on a Lie group G is
left invariant if dL;X = X for all £ € G. The left invariant vector
fields are completely determined by their values at a single point
of G. This allows us to introduce an additional structure on the
tangent space to the neutral element e € G in the following manner.
To each vectorX. € T.G we associate the left invariant X defined
by X, =dL,X.,a € G. Let X,Y be left invariant vector fields on
G. Since for each z € G and for any differentiable function f on G,

dL.[X,Y]f = [X,Y]|(f o L) = X(dL,Y)f — Y(dL . X)f =

= (XY -YX)f =[X,Ylf,

we conclude that the bracket of any two left invariant vector fields is
again a left invariant vector field. If X.,Y. € T.G, we put [ X, Y] =
[X,Y].. With this operation, T.G is called the Lie algebra of G,
denoted by G. From now on, the elements in the Lie algebra G will
be thought of either as vectors in T.G or as left invariant vector
fields on G.

To introduce a left invariant metric on G, take any arbitrary
inner product ( , ). on G and define

() (,)s = (([dLe=)a(w), [@dLa)s(0))e, T € G, u,0 € T,G.

Since L, depends differentiably on z, this construction actually pro-
duces a Riemannian metric, which is clearly left invariant.

In an analogous manner we can construct a right invariant
metric on G. If G is compact, we will see in Exercise 7 that G
possesses a bi-invariant metric.

If G has a bi-invariant metric, the inner product that the
metric determines on G satisfies the following relation: For any
UV, X eg,

'VDiﬁe.rent.iating the expression above. with res
A{,) is bilinear, and setting ¢ =
-conclude that
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Before proving the relation
about Lie groups.

hiom F;)rG a.:ily a e. G, let RyerL,:G = @ be the inner automor-
puism o) etermined by a. Such 3 mapping is a diffeomorphism
at keeps e fixed. Thus, the differentia] d(Ry-1L,) = Ad(a):G - ¢

is a linear map (in fact, it is i
, a homomorphism of the I
but we do not need this fact). Explicitly, " Lis algebre,

above, we need some preliminary facts

Ad(@)Y =dR,dL,Y = dR,.Y, forally eg

Let z; be the flow of X €

o0, g. Then, from Proposition 5.4 of Chap-

.1
On the other hand, since X is left invariant, L, oz, = zi0 Ly, giving
v
2e(y) = 2:(Ly(e)) = Ly (z1(e)) = ya, (e)=R
Therefore, dz, = dRz,(e), and »

z¢(e) (y)

Y, X]

1
gl !
153 7 (@Ree)(¥V) = Y) = lim ~(4d(z; )Y - v).

Let us now return to the
. . proof of (3). Let )b - .
metric on a Lie group G. Then for any X, U] V(e >g 8 binveriant

UV =
( > (dth(e) o dLI;—I(e)U; dth(e) ° szt—l(e) V) =

= (de,(e) U,dR,, V).

: pect to ¢, recalling that
0 in the expression obtained, we

| 0= (0, X],V) + (U, v, X)),
hich is the equation (3).

The important point about the relati

| on . .
cterizes the bi-invariant metri e s that i o

¢s of G, in the followin
g sense. If a
(, )éf defined on G satisfies the relation (3),
etr.lc defined on G by (2) is bi-invariant. It
his fact but we will not go into the proof
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97 ExAMPLE. The product metric. Let M, and M }\)/[e Rlitta?:;:
nia.n manifolds and consider the cartesian product M 1\1/[ X Y ?\4 w e
product structure. Let m: M1 x Ma — My and m;{ ; o r?l e
be the natural projections. Introduce on M; x Mz

metric as follows:

(1, V) (p,q) = (@71~ Uy dry - v)p + (dma - u,dm2 - Vg

for all (p, q) € M, x M3, u,v € T(p,q)(M1 x Ma).

It is easy to verify that this is really a Rilemannian m;tiric Oznti:z
product. For example, the torus St X xS = ™ ha§ a m:zrrl; nian
structure obtained by choosing the induced Riemannian ic from
R2 on the circle S? C R? and then taking the product metric.
torus T™ with this metric is called the flat torus.

We are now going to show how a Riemannian metric can be

f curves.

used to calculate the lengths o .
2.8 DEFINITION. A differentiable mapping ¢ I - 1:51 o; an( o:re;
ir;terval I CcRintoa differentiable manifold M is called a (P

metrized) curve.

Observe that a paran
tions as well as “corners” (Fig. 1).

rametrized curve can admit self-intersec-

Figure 1
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2.9 DEFINITION. A vector field V along a curve c:I — M is a
differentiable mapping that associates to every ¢ € I a tangent vec-
tor V(t) € TyyyM. To say that V is differentiable means that for
any differentiable function f on M, the function ¢ — V(¢)f is a
differentiable function on 1.

The vector field dc(i‘;), denoted by %, is called the velocity
field (or tangent vector field) ofc. Observe that a vector field along
¢ cannot necessarily be extended to a vector field on an open set of
M.

The restriction of a curve ¢ to a closed interval [a,b] C I is
called a segment. If M is a Riemannian manifold, we define the
length of a segment by

b /de dc\M?
eZ(C)-T-/ <E—£’EZ> dt.

Let us now prove a theorem on the existence of Riemannian
metrics.

2.10 PROPOSITION. A differentiable manifold M (Hausdorff with
countable basis) has a Riemannian metric.

Proof. Let {fa} be a differentiable partition of unity on M subor-
dinate to a covering {V,,} of M by coordinate neighborhoods. This

- means (See Chap. 0, Sec. 5) that {V,,} is a locally finite covering (i.e.,
~ any point of M has a neighborhood U such thatU NV, # ¢ at most
- for a finite number of indices) and {f,} is a family of differentiable
~ functions on M satisfying: B

1) fo >0, f, =0 on the complement of the closed set V.
-2 >, fa(p)=1forallpon M.
It is clear that we can define a Riemannian metric (,)* on each
Va: the metric induced by the system of local coordinates. Let us
then set (u,v)p = >, fa(P)(u,v)§ for allp € M, u,v € T,M. It is

€asy to verify that this construction defines a Riemannian metric on
M. O

To conclude this chapter, we are going to show how a Rie-

annian metric permits us to define a notion of volume on a given
riented manifold M™.

As usual we need some preliminary facts. Let p € M and let

U C R® = M be a parametrization about p which belongs to a
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family of parametrizations consistent with the orientation of M (we
say that such parametrizations are positive). Consider a positive
orthonormal basis {ej,...,e,} of T,M and write X;(p) = aiz;(p) in
the basis {e;}: Xi(p) =>_;; aije;- Then

gk (P) = (Xi, Xi) (0) = 3 aij0ke (e, €0) = Y a3;0k;.
gt i

Since the volume vol(X;(p), ..., Xn(p)) of the parallelepiped formed
by the vectors X1(p),..., Xn(p) in T,M is equal to vol(e,,...,en) =
1 multiplied by the determinant of the matrix (a;;), we obtain

vol(X1(p), - - ., Xn(p)) = det(ai;) = 1/ det(gi;)(p).

If y:V ¢ R®™ — M is another positive parametrization about p,
with Y;(p) = a%‘_-(p) and hy;(p) = (¥;,Y;) (p),we obtain

(@) \/det(gi)(®) = vol(Xi(p), .., Xn(p))
= Jvol(Yi(p), .., Ya(p)) = J1/det(hi;)(p),

where J = det(g—:ji) = det(dy~! o dx)(p) > 0 is the determinant of
the derivative of the change of coordinates.

Now let R C M be a region (an open connected subset),
whose closure is compact. We suppose that R is contained in
a coordinate neighborhood x(U) with a positive parametrization
x:U — M, and that the boundary of x~!(R) C U has measure
zero in R™ (observe that the notion of measure zero in R™ is invari-
ant by diffeomorphism). Let us define the volume vol(R) of R by
the integral in R™

(5) vol(R) = /_I(R) \/det(gij) dzy ... dz,.

The expression above is well-defined. Indeed, if R is con-
tained in another coordinate neighborhood y(V') with a positive
parametrization y:V C R®™ — M, we obtain from the change of

- consisting of coordinate neighborhoods x(IJ;)

-1t follows immediately that the expression above does

~Positive differential form of degree

;6btained.
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variable theorem for multi
in (4),

,/x‘—-l(R) \/dmdzl e dzn
— /y—l(R) \/(TetT,del PR dyn = vOl(R)’

which proves that the definition given by

the clfqlce of the coordinate system

entability of M enters by guaranteei

sign).

t2h ; t1 iﬁl:téRK ( 4)The 1ieader familiar with differential forms will note

ion implies that the integrand in th
. . . e formula for th

volume in expression (5) is a positive differentia] form of degree ne

(or volume element) v on M ,

ple integrals, (using the same notation as

(5) does not depend on
(here the hypothesis of the ori-
ng that vol(R) does not change

a partition of unity {y; (finite) covering of R

and to take

vol(R) = Z/ ;.

i zi—l(R)

on the choice of the partition of unity. not depend

2.12 REMARK. Tt is clear that the existence of a globally deﬁned.

] : n (volume element) lead
notion of volume'dn a differentiable'manifold. A Rieman)nian rsn;friz

only one of the ways through which g volume element can be

Prove that the antipodal mapping 4:57 _, sn

A(p) = —p is an isometry of S, Bven Y

Use this fact to introduce
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a Riemannian metric on the real projective space P*(R) such
that the natural projection 7: S — P™(R) is a local isometry.

Introduce a Riemannian metric on the torus 7™ in such a way
that the natural natural projection n: R™ — T™ given by

n(z1,...,T,) = (€21,...,e"), (x1,...,7,) € R,

is a local isometry. Show that with this metric T™ is isometric
to the flat torus.

Obtain an isometric immersion of the flat torus 7™ into R2".

A function g: R — R given by g(¢) = yt+z, t,z,yeR, y>
0, is called a proper affine function. The subset of all such
functions with respect to the usual composition law forms a
Lie group G. As a differentiable manifold G is simply the
upper half-plane {(z,y) € R%y > 0} with the differentiable
structure induced fromR2. Prove that:

(a) The left-invariant Riemannian metric of G which at the
neutral element e = (0,1) coincides with the Euclidean
metric (911 = g22 = 1, g12 = 0) is given by g11 = goo =
517, gi2 = 0, (this is the metric of the non-euclidean ge-
ometry of Lobatchevski).

(b) Putting (z,y) = 2z = z+iy, ¢ = v/—1, the transformation
z— 2 =2 4bcdeR, ad—bc=1Iis an isometry
of G.

Hint: Observe that the first fundamental form can be written
as:
_de® +dy®  Adzdi

2 —
" R s

Prove that the isometries of S™ C ‘R"+1, with the induced

metric, are the restrictions to S™ of the linear orthogonal maps

of R™*1,
Show that the relation “M is locally isometric to N” is not a
symmetric relation.

Let G be a compact connected Lie group (dimG = n). The
object of this’ exercise is to prove that G has a bi-invariant
Riemannian metric. To do this, take the following approach:
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(a) Let w be a differential n-
that is, Liw = w, for al
invariant,

Hint: i
wnt: For any a ¢ G, Riw is left invariant, It follows

*
;hag E‘};)_—{O f (a)w. Ve.nfy thatf(ab) = S(a) f(b), that is
LiC R }isa (continuous) homomorphism of ¢ into th,
utiplicative group of real numbers, Since f(G) is a ;
co:mected subgroup, the conclusion f(G) =1 hold horatns
Ray olds. Therefore
(b) Show that there exists a left
won G.

(c) Let (, ) bealeft invariant metric on G. Let w be a positive

ntial n-form on G which is invariant on the left, and

form on G invariant on the left,
lz € G. Prove that w is right

invariant differential n-form

define a new Riemanniap metric ((, )) on G by

(ol = [ (@R, (@R),0,

%Y E€G, u,veT,(G).

Prove that this new Riemannian

invariant,. metric ({,)) is bi-




