Two Hours
 UNIVERSITY OF MANCHESTER

Algebraic Structures
MT2262

> Tuesday 31st May, 2005
> 2.00p.m. -4.00 p.m.

Electronic calculators may be used, provided that they cannot store text.

Answer ALL five questions in SECTION A (40 marks in all) and
TWO of the three questions in SECTION B (20 marks each)
The total number of marks on the paper is 80 . A further 20 marks are available from coursework during the semester making a total of 100 .

SECTION A

Answer ALL five questions

A1. Which of the following binary operations on \mathbb{R}^{\times}give rise to a group $\left(\mathbb{R}^{\times}, o\right)$? Give reasons for your answers.
(i) $a_{o} b=-3 a b$ (for all $a, b \in \mathbb{R}^{\times}$),
(ii) $a_{o} b=|3 a b|$ (for all $a, b \in \mathbb{R}^{\times}$).

A2. Solve each of the following equations for x in a group G with $a, b, c \in G$.
(i) $a^{2} x b^{-3}=c^{2} b^{4}$,
(ii) $a^{3} b^{2} x^{2} c=c^{2} a x^{3} c$.
[8 marks]

A3. Define what is meant by an abelian group. Let $G L_{2}(\mathbb{R})$ be the group of non-singular 2×2 real matrices under multiplication. Decide whether or not each of the following subgroups of $G L_{2}(\mathbb{R})$ is abelian or not, giving reasons for your answers.
(i) $H=\left\{\left.\left(\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$,
(ii) $K=\left\{\left.\left(\begin{array}{cc}b & c \\ 0 & d\end{array}\right) \right\rvert\, b, c, d \in \mathbb{R}, b \neq 0, d \neq 0\right\}$.

A4. Which of the following subsets of \mathbb{Q} are subrings of \mathbb{Q} ? Give reasons for your answers.
(i) $S_{1}=\left\{\left.\frac{u}{2^{m}} \right\rvert\, u \in \mathbb{Z}, m \in \mathbb{Z}\right\}$,
(ii) $S_{2}=\left\{\left.\frac{v^{2}}{2^{n}} \right\rvert\, v \in \mathbb{Z}, n \in \mathbb{Z}\right\}$.

A5. Find

(i) the number of zero-divisors in \mathbb{Z}_{100}
and (ii) the number of units in \mathbb{Z}_{100},
giving reasons for your answers.

SECTION B

Answer TWO of the three questions

B6. Define what is meant by the order of an element in a group. Show that if x is an element of finite order in a group and the order of x is the same as the order of x^{2} then the order of x is odd.

Find the order of each of the following elements in the given groups, giving reasons for your answers.
(i) $\overline{16} \in \mathbb{Z}_{20}$,
(ii) $\left(\frac{\sqrt{3}-i}{2}\right) \in \mathbb{C}^{\times}$,
(iii) $\left(\begin{array}{lll}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right) \in G L_{3}(\mathbb{R})$.
[20 marks]

B7. Define what it means for a group to be cyclic. Prove that if G is a cyclic group and H is a subgroup of G then H is cyclic.

For each of the following subsets of \mathbb{Z}_{99} (with addition),
(a) find the number of elements in the subset and (b) decide, giving reasons, if the subset is a subgroup of \mathbb{Z}_{99}.
(i) $T_{1}=\left\{\bar{x} \in \mathbb{Z}_{99} \mid 12 \bar{x}=\overline{0}\right\}$,
(ii) $T_{2}=\left\{\overline{12 y} \mid y \in \mathbb{Z}_{99}\right\}$,
(iii) $T_{3}=\{\bar{k} \mid 0 \leq k \leq 98, k$ divisible by 4$\}$.

B8. Define what is meant by
(a) a unit,
(b) a zero-divisor in a commutative ring with identity.

Show that an element in a communtative ring with identity (where $1 \neq 0$) cannot be both a unit and a zero-divisor.

Find an element in $\mathbb{Z} \oplus \mathbb{Z}$ which is neither a unit nor a zero-divisor.
Show that $5+2 \sqrt{6}$ is a unit in $\mathbb{Z}[\sqrt{6}]=\{m+n \sqrt{6} \mid m, n \in \mathbb{Z}\}$.
Find a unit $r+s \sqrt{6}(r, s \in \mathbb{Z})$ in $\mathbb{Z}[\sqrt{6}]$ with $r>100$ and $s>0$.

