From the (Q, r) model, knowing that Q, the best reorder point r(Q) is found by determining the Q smallest values, say 
[image: image1.wmf]1

G

 = 
[image: image2.wmf])

(

),........

(

1

Q

Q

Y

y

G

G

G

=

 

of the loss function 
[image: image3.wmf])

(

y

G

= 
[image: image4.wmf]+

+

-

E

+

-

E

)

(

)

(

y

D

p

D

y

h

. (
[image: image5.wmf]h

= Holding cost, 
[image: image6.wmf]p

= shortage cost rate, D = random demand) 

and if I set r(Q) = 
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Using these and given that the demand is Poisson, I can derive the cost as the function of Q 

C(Q)  = 
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Then, 
C(Q)  = 
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   assume that K = 1

If the following arbitrary data is available, 
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= 30, 
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= 1, 
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= 9, assume that K = 1

	Y
	G(y)

	33
	$13.31 

	34
	11.75

	35
	10.723

	36
	10.149

	37
	9.953

	38
	10.063

	39
	10.415

	40
	10.952

	41
	11.629

	42
	12.408

	43
	13.26

	44
	14.162


1.   How can find a cost upper bound on an optimal (Q, r) policy? 

2. Using the data from the table above, do I have sufficient information to compute the cost function? If it is possible, how can I compute it? For example c(10)?

3. Using the data from the table above, do I have sufficient information to compute 
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