Let F be a field and 
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over F. Define a function 
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(a) Show that T is a linear operator.

(b) Find the characteristic and minimal polynomials for T, with explanation. (For the characteristic polynomial, recall that you will need to choose a basis for 
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, find the matrix of T relative to that basis, and find the characteristic polynomial of the matrix.)

(c) By Example 47, we can use T to make 
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into a module over the polynomial ring 
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. Show that is cyclic 
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 by giving a generator for M, with explanation. Find the 
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 (as defined in Exercise 38).
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