//Game specification is to write a program that plays a variant of the solitaire

//game known as Klondike. The goal is to construct four sequences of cards. The

//foundation piles, each sequence is formed by putting cards of the same suit

//into the same pile ascending order beginning with the ace. The setup of the game

//begins by shuffling a deck of cards .Seven piles of cards are dealt out to form the

//tableau, The first pile has one card. The second has 2 etc. The top card on each pile

// is turned up. The others remain hidden. A card can be added to the foundation pile

//pile if its value is one greater than that of the topmost visible card and the color

//is opposite. All of the cards of the pile can be moved to another pile if the bottommost

//visible card can legally be added to the pile. When all of the visible cards are moved,

//the top hidden card is turned over. If there are no more hidden cards the empty spot

//can be occupied by the visible cards from the other pile. A card can be added to the

//foundation pile if its value is one greater than the topmost card and the suite is the

//same. The first card in the pile must be an ace of that suit. Cards can be moved to a

//fondation pile. Cards can be moved to a foundation pile from either the top visible

//card in the tableau pile or the waste pile. In the beginning of play the waste pile is

//empty .After adjustments are made to the initial tableau a card is taken form the

//remainder of the deck and placed as the first card in the waste pile. This card can be

//moved to either a foundation pile or a tableau pile if it fits. If it doesn't fit it remains in

// the waste pile. Another card from the remaining deck is drawn and placed on the waste

//pile. if a drawn card can be placed on a pile this may open up the possibility of moving

//cards around in the tableau. It may also enable the top card in the waste pile to be placed

//.The adjustments are made until nothing can be moved. Play continues until all of the

//original cards in the deck are in play and all adjustments are made. It is then permitted

//to move all of the cards in the waste pile back into the deck .Another round of play

//resumes until the deck is emptied.

//The program should have the capability to play the game. A combination of structures

//stacke and queues to represent the various groups of cards. You can represent a card

//using a structure with one component that is an integer value to hold a the face value

// and another that in an enumerated value to hold the suit. You can use a queue to

//represent the main deck of cards you will be taking cards from the top and occasionally

//putting others back on the bottom. A foundation pile can be most easily represented by a

//queue since it is required that the contents be displayed. The hidden portion of the

//tableau should be represented by a stack to facilitate adding and removing from the top

//of the pile.The waste pile is also best represented with a stack.

//A suggested order of development is as follows

//*Generate the initial deck of cards. Store 52 cards in an array. Then randomly

//select cards from the set and insert them into a queue for the starting hand of the cards.

//* Initialize the foundation piles and the waste pile to be empty deal out the cards to the

//the seven tableau stacks then take the top cared and place it in the corresponding visible

//queue.

//*Develop a printing routine to display the contents of the foundation piles and the

//visible parts of the tableau pile and the waste pile. A textual printout is all that is needed

//(graphical output is not necessary.

// *Develop the strategy to move around cards as the result of taking one card from the

//remaining deck on the top of the waste pile. Examine first whether this card can be

//placed on the foundation pile. If not can it br played onto one of the tableau piles? Next

//determine if the visible cards on the tableau piles can be moved to another to free up a

//hidden cards. If this happens the new card should be examined for moving to another

//pile. If no visible cards can be moved to another tableau pile then determine if the

//topmost visible cards can be moved to a foundation pile.

//* all of the stepts above should be repeated in a loop until there is no further card

//movement possible.

// organize the play for an entire round. Continue to take cards out of the remaining deck

//hand and deal them until the entire hand is used. check the contents of four foundation

//piles and determine if the game is over.

//* if the game is not over move the cards from the waste pile to the deck .

//continue playing until either the game is won or an entire round goes by without any

 //movement of the cards on the table.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

typedef struct{

//typedef selected to eliminate the need for structure tag

char *face;

char *suit;

}Card;

void populate_deck(Card *, char *[], char *[]);

void print_deck(Card*);

void shuffle (Card *);

main()

{

Card deck [52];
//declares an array of 52 cards

char*face[] = {"Ace","2","3","4","5","6","7","8","9","10",

 "Jack","Queen","King"};

char *suit[] = {"Hearts","Diamonds","Clubs", "Spades"};

srand(time(NULL));

populate_deck(deck,face,suit);

print_deck(deck);

puts("\t Shuffled Deck\n");

shuffle (deck);

print_deck(deck);

}

void populate_deck(Card * wDeck, char *wFace[], char *wSuit[])

{

int i;

for(i=0; i<52; i++)

{

wDeck[i].face = wFace[i%13];

wDeck[i].suit = wSuit[i/13];

}

}

void print_deck(Card*wDeck)

{

int i;

for (i = 0; i<52;i++)

printf("%5s of %-8s%c",wDeck[i].face, wDeck[i].suit,

(i+1) % 2 ?'\t':'\n');

printf("\n");

}

void shuffle(Card *wDeck)

{

int i,j;

Card temp;

for (i = 0;i<52;i++)

{

j = rand() %52;

temp = wDeck[i];

wDeck[i]=wDeck[j];

wDeck[j] = temp;

}

}
