Please do with all step showing how you arrive at the answer

(c) (i) Find the area of the triangle with vertices (t, t-2), (t+2, t+2), (t-3, t)

Does the area changes with t ?
(2 marks)
(ii) In a theorem of solid geometry, the volume of the tetrahedron is
$\frac{1}{3}$ (base area) \times (height). Compute the volume of the tetrahedron with vertices $\mathrm{A}(-1,2$
(0), $\mathrm{B}=(3,5,1), \mathrm{C}(0,0,1)$ and $\mathrm{D}=(4,-1,3)$.

$$
\text { (} 5 \text { marks) }
$$

Hint :Use the modulus of determinant and take A as the reference point to compute the volume of parallelpiped first.

