Please show with steps showing how to arrive at the final answer

(a) Find the work done by the force $\underline{F}=(y-2 x) \underline{i}+(-x) j$, as it moves a particle from the point $(0,1)$ to $(1,0)$ along parabola C_{1} given by $y=1-x^{2}$, and then return through the 3 quarter unit circle, C_{2} centre at the origin, from $(1,0)$ to $(0,1)$

The 3-quarter circle C_{2} can be parametrized by the equations $x=\operatorname{cost}$, $y=-\sin t$ where t goes from $t=0$ to $t=\frac{3 \pi}{2}$.

Does the answer remains if C_{2} is replaced by another part of the circle, C_{3} in opposite direction parametrized by $x=\operatorname{cost}, \mathrm{y}=$ sint where t goes from $\mathrm{t}=0$ to $\mathrm{t}=\frac{\pi}{2}$?

(14 marks)

(b) The region R in the $x y$-plane is bounded by the lines $x+y=1, y=x=1$ and $y=3$.
(i) Sketch the region R;
(2 marks)
(ii) Find the limits of the integration for

$$
\iint_{R}\left(y^{2}-2 x\right) d x d y \text { and } \iint_{R}\left(y^{2}-2 x\right) d y d x
$$

(iii) Evaluate the integral over R. (3 marks)

