Please show with steps how you arrive at the final answer

(a) Let $z=3 x^{2}-2 x y+x^{2} y=2$.
(i) find the vector which is normal to the curve at (1,1) (3 marks)
(ii) Write down a unit vector \underline{d} along the line $\mathrm{y}=\mathrm{x}$ and directed at the positive x direction.
(2 marks)
(ii) Find the rate of change of z in the direction of d .
(2 marks)
(b) The electric intensity of a electrostatic function $V(x, y, z)$ is $E=-\nabla V$

The electrostatic potential produced by a unit dipole-moment, located at the origin and directed along the y-axis , is given by

$$
V(x, y, z)=\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \quad(\mathrm{x}, \mathrm{y}, \mathrm{z}) \neq(0,0,0)
$$

(i) Determine the corresponding field-intensity function E. (6 marks)
(ii) In what direction, does the potential decreases most rapidly from the point $(4,2,4)$?
(2 marks)
(c)
(i)

If $\underline{F}=y^{2} \underline{i}-3 x^{2} \underline{j}+y z \underline{k}$, find $\nabla \times \underline{F}$ and $\nabla \bullet \underline{F}$
(3 marks)
(ii) Show that $\underline{G}=2 x y^{3} \underline{i}+\left(1+3 x^{2} y^{2}\right) \underline{j}$ is conservative vector field on the entire plane. (3 marks)
(iii) Find a potential function Φ so that $\nabla \Phi=G$. (3 marks)

