Please do with steps showing how you arrive at the final answer

(a) The following is the application of the power method to estimate eigenvalues and eigenvectors.

Let X_{n}, Y_{n} denote the sales of two types of calculator at the nth year. At the beginning of year $\mathrm{n}+1$, the corresponding units sold are given as

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{n}}=\binom{X_{n+1}}{Y_{n+1}}=\left(\begin{array}{ll}
4 & 1 \\
2 & 5
\end{array}\right)\binom{X_{\mathrm{n}}}{Y_{v}}=\mathrm{A}\binom{X_{v}}{Y_{n}} \\
& \mathrm{e}_{0}=\binom{1}{1}
\end{aligned}
$$

(i) Find the eigenvalues and corresponding eigenvectors v_{1} and v_{2} of A.
(ii) Express e_{0}, e_{1}, e_{2} as linear combination of v_{1} and v_{2}.
(iii) Find a general formula for e_{n} in terms of v_{1} and v_{2}. (1 mark)
(iv) Find the limit of $\frac{Y_{n}}{X_{n}}$ as n approaches infinity. What does it implies to finding eigenvectors and corresponding eigenvalues by iteration.
(2 mark)
(b) Given position vector of two points A, B and C are $\underline{a}=2 \underline{i}-\underline{j}+\underline{k}$ and $\underline{b}=2 \underline{i}+\underline{j}+3 \underline{k}$, $\underline{c}=\underline{i}-3 \underline{j}+\underline{k}$
(i) find the distance between A and B (1 mark)
(ii) find the angle between $\underline{a}-\underline{b}$ and $\underline{a}+\underline{b}$. (3 marks)
(ii) find a unit vector perpendicular to the plane containing $\mathrm{A}, \mathrm{B}, \mathrm{C}$. (3 marks)
(iii) find the Projection of AC along AB .

