736 Laminar Flow of Viscous b:,S:E:.:, )
- S8ible

N_.\:E.w
dv R A | Py
or 2 =3 VC+3CF-eFr -
3 IF
Inteors: t1 g, 0 = = — u.\.,im!,(\\ e——)
ntegrating 2 M‘ (ﬁﬁu 4 wﬁ_m — 6F* — F¥) -(14)
which is a solution expressed in terms of an elliptic integral,
Since the order of the differential equation (10) is three, it follows
that three boundary conditions are needed to be satisfied by (10). These Eav.
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Using the above boundary conditions, the constants C, and C, can

be determined and hence the desired solution can be obtained.

~14.14.  Small Reynold’s Number Flows.

Since Navter-Stokes equations are non-linear, their solution in general
case in not simple. The main difficulty arises due »to presence of non-linear
convective terms. These non-linear terms are unimportant when we consider
situation with very small Reynolds number. The Reynolds number Ul/v can
be small by reason of the typical velocity U being small or the typical
length / being small, or by the kinematic viscosity v being large. When U
is small we have slow motion or creeping motion; when / is small weé
have the motion of minute objects, for example Brownian motion. Theo-
retically in creeping flow the Reynolds number is taken to be much _nu..m
than one. However, it has been seen that the solutions obtained by this
process hold good even when Reynolds number is merely less than onc.

14.15. Flow Past a Sphere. Stokes Flow. [Himachal Pradesh 2000, 01]

Let a solid sphere of radius a be held fixed in a uniform stream Y

flowing steadily in the positive direction of the axis of x. Let the fluid b

viscous incompressible. Let the flow be steady and axi-symmetric at .f,_,_ﬁ_mg
Reynolds number. Asa first approximation, Stokes neglected the convect!Y
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o'in the Navier-Stokes equations because they are quadratic in the ve-

i Now, the pressure forces must be balanced by viscous forces-alone.
%M:Wn the equations of motion reduce to

5 0 =-Vp+uViq e 1)
nE Vq=0 (2)
ﬁ& boundary conditions :

- q=0atr=a;q=(U00)atr=r, .(3)

* Taking the divergence of (1) and using (2), we get

. Vip =0, _ -(4)
m,m wing that the pressure satisfies the Laplace equation and so the pressure
is a harmonic function for small Reynolds number flows.
o spherical polar coordinates (r, 8, ¢), we choose the axis 6 =0 1o
lie'in the direction of the free stream U. Then the equation of continuity
(2) 1s satisfied if the velocity components are given in terms of stream

funetion ' by

o S0 U o L)
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Using (5), (1) reduces to
Ety = 0, .(6)
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0 The boundary conditions at the surface of the sphere take the new
form :

Ve (1,8) = 0, w (1,0) = 0. ..(8)
i Since the flow is uniform upstream, we have

Y(r,8) ~ S 2sin?0 asr — o .(9)

40d this suggests the trial solution

v = f(r) sin. .(10)
Substituting this in (7) gives successively
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,.,&._.ré is linear :oSomm_‘ﬁo:m .a:,».,ﬂm:qm_ QEE_.o:_ 3., the fourh order,
satisfy (11) by a sum of terms of the form Ar®, we find 0
[(n=-2)(n-3)-2] [n(n—1)-2] = 0.
sothat n = - 1, 1, 2, 4, and hence
. A 2
f(r) = 7y + Br+ Cr* + D4, -(12)

Condition (9) shows that we must take D = 0. Ag

ain conditiong (8)
show that A = w B = IM and C = _ )
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. From (10) and (12), we have
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so that g =U| 1- ot 22 |<o8 (14)
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and qo = —U]| 1 ~4r TG \*m_: 6. (15)

The solution (13) was obtained by Stokes. The first term is the uni-
form stream and the third term is a dipole at the centre of the sphere, both
representing the irrotational flows. The second term, which contains all the
vorticity, is known as Stokeslet. For non-viscous fluid flow, the Stokeslet
is not present and the coefficient of dipole is — 1/2 in place of 1/4. The
solution satisfies the surface boundary conditions of the problem. On the
other hand it fails ta satisfy the boundary condition at infinity. It follows
that this expansion breaks down for large r and this breakdown is known
as Whitehead's paradox.

Let F be the resultant force (drag force) exacted by the fluid on the
surface of the sphere in the z-direction. Then

| ooy (16)
F = NQS,.?A\N sin 6 40,
0

. : s o i the z-directol
where F_ is the force per unit area of the spherical surface in the z-di
and is given by
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m:w.ﬁ::::m this in (16) and integrating, we get
F = 6muUa. (L)

This result was first obtained by Stokes and is known as Stokes for-
aam for drag on a sphere.
1 16, Flow Past a Circular Cylinder. ,
. We propose to solve the Stokes equations :,:. uniform _._:E past a
ular cylinder of radius a. For steady flow, the Stokes equations reduce

cire
10 5
0=-Vp+uVyg {00
and V.q= 0. +4(2)
Taking the curl of (1), we obtain
ViQ = 0, .(3)
where Q = Vxq = vorticity vector (4)

Since in two dimensions the only non-zero component of €2 i
(which is the vorticity in the z-direction).

w
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where g ox  dy / a2 | oyt )

where v is the stream function satisfying the continuity equation (2).
. Now, the vorticity must satisfy the equation

WJ.+ uirx v =0. )
ox? \

Transforming (7) into cylindrical polar coordinates, we get

=

e

y =0 i (3
orr ror r?oe? ¥

W Since the flow is uniform upstream, we take

WY (r,0)~rsinB asr— oo ..(9)
&,5 this suggests the trial solution
Y v (r, 8) = f(r)sin . .(10)

P mccmnE::m this in (8) gives .




