The Brouwer Fixed-Point Theorem
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Any continuous map 
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 onto itself has at least one fixed point, i.e. a point 
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Proof
 Suppose 
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 has no fixed points, i.e. 
[image: image10.wmf](

)

fxx

¹

 for 
[image: image11.wmf]n

xE

"Î

.  
Define a map 
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, by letting 
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 be the point of intersection of 
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 and the ray starting at the point 
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 and going through 
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 see figure below:
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Then
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and so 
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 is continuous.  Could you please explain, in as much detail as possible, how (1) and (2) were derived?
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