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The textbook starts immediately with the description of bar and beam elements.  We will first 

do an even simpler element – the spring element.  The reason for this is that we already know 

the stiffness of the spring k.  With several springs in a system, the global stiffness matrix 

needs to be assembled.  This procedure can easily be explained using spring elements.  We 

will then move onto the bar and beam elements where we will calculate the stiffness matrix 

for each respectively.  The process of assembling the element stiffness matrices into a global 

stiffness matrix is the same for any type of element. 

 

B.1 Spring Elements and Assembly 
 

B.1.1  Single Element 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assume that the spring is linear elastic, following the relation ∆= kF .  Let node 2 be 

displaced by a distance u2 and node 1 by a distance u1 with u2 > u1.  Consider the equilibrium 

of forces for the spring under these displacements. 

 )( 121 uukf −−=  

 )( 122 uukf −=                 B.1-1 

Equation B.1-1 can be written in matrix notation, 
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Figure B.1-1 –  Single spring element with stiffness k 
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stiffness matrix     x     displacement vector   =   force vector 

Lets analyse Equation B.1-2 by setting u2 = 0, 
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and similarly by setting u1 = 0, 
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From this it can be seen that the first column in the stiffness matrix gives the force at each 

node in order to have a unit displacement at node 1 and zero displacement at all the other 

nodes.  Similarly, the second column in the stiffness matrix gives the nodal forces with a unit 

displacement at node 2 and zero displacement at all the other nodes.  This procedure will be 

used later to determine the stiffness matrix for beam elements. 
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B.1.2  System of Spring Elements 

 
 

 

 
  

 

 

 

 

 

 

 

 

For element 1, the element nodes are 1 and 2 as in Figure B.1-1.  These nodes correspond to 

the global nodes 1 and 2, as indicated in Figure B.1-2.  For this element, the equilibrium 

equation is given by 
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For element 2, the element nodes 1 and 2 correspond to global nodes 2 and 3 respectively, 
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Equilibrium of nodal forces can be written as 
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where F indicates global nodal forces and f element nodal forces.  Making use of Equation 

B.1-4, the equilibrium equations Equation B.1-5 follows, 

Figure B.1-2 –  System of single spring elements 
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In matrix form 
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The two individual stiffness matrices for element 1 and element 2 are indicated in Equation 

B.1-7.  Equation B.1-7 is the global set of equations, with K  the global stiffness matrix, D  

the global nodal displacements and F  the global nodal force vector.   

 

An alternative way of assembling the global stiffness matrix follows:  The stiffness matrix for 

each element can be “enlarged”, 
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  for element 1 
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The two equations can now simply be added together, 
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B.1.3  Boundary Conditions 
 

Can Equation B.1-9 be solved for the nodal displacements?  In order to accomplish this, we 

need to calculate the inverse of the stiffness matrix, RKD 1−
=  

 

The determinant of the stiffness matrix is given by, 
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The determinant is equal to zero, which means that the inverse of K  is not defined and the 

nodal displacements can not be solved for.   

 

In physical terms this means that the system (springs) are not constrained, i.e. rigid body 

motion is possible.  To avoid rigid body motion, constraints should be applied.  The most 

common constraint is to “fix” one or more of the nodes.   

 

For this example, let’s fix node 1:  u1 = 0 and F2 = F3 = P.  The external force applied at 

node 1 would be the reaction force, an unknown.  Equation B.1-7 can be written as 
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which reduces to 
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and  211 ukF −= , the reaction force.  This is equivalent to deleting row 1 and column 1 in 

the stiffness matrix.  If it was node 2 that was constrained, it would have been row 2 and 

column 2 that would have been deleted. 

 

The reduced stiffness matrix is no longer singular, and the system can be solved for the 

unknown nodal displacements at node 2 and node 3 (node 1 is fixed). 
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and the reaction force follows from Equation B.1-11, PukF 2211 −=−= , which ensures 

equilibrium. 

 

Note:  The unconstrained system has 3 degrees-of-freedom (one displacement per node).  The 

constrained system has only 2 degrees-of-freedom.  

 

Now, with the knowledge of assembling and boundary conditions know, we can move onto 

more complex elements.  The process of assembling a global stiffness matrix and applying 

boundary conditions are the same for any type of element, it is just the formulation (and size) 

of the stiffness matrix that may differ. 

 

2.2 Stiffness Matrix Formulation:  Bar Element 
 

The bar element is similar to a spring element, i.e. it can only resist an axial force.  Each bar 

element has 2 nodes, i.e. 2 degrees-of-freedom.  Let’s look at a simple bar element with 

constant area A, Young’s modulus E and length L: 
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Comparing this to a spring element, 
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L

AEkLkF =→∆=        B.2-1 

 

2.2.1  The Direct Method 
 

The direct method of calculating the stiffness matrix was used for the spring element.  Above 

it has been shown that the stiffness of a bar element is given by Equation B.2-1.  Making use 

of Equation B.1-2, the stiffness for the bar element follows as, 
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This, of course, assumes small deformations and elastic materials. 

 

2.2.1  The Formal Procedure 
 

 
 

 

 

Let’s write an expression for the axial displacement u of an arbitrary point on the bar.  

Assume that node 2 is fixed, and node 1 is given a unit displacement, Figure 2.2-2a.  The 

displacement at node 2 will be zero, and the displacement at node 1 should be unity (1).  The 

deformation, for example, in the centre of the bar should be 0.5.  This is written as 

 1u
L

xLu −
=          B.2-2 

where x starts from node 1 as in the figure, and u1 is the displacement of node 1.  The same 

can be done with node 1 fixed and node 2 given a unit displacement, 

Figure 2.2-2 –  Shape functions N1  and N2 for a two-node 
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 1u
L
xu =          B.2-3 

Combining Equation B.2-2 and B.2-3 in matrix notation 
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where  N  is called the shape function matrix and d the vector of element nodal degrees-of-

freedom (translation in this case, but could also be rotations as in beam elements).  

 

Let’s now return to the definition of strain given in Chapter 1 (notes).  Since this is a one-

dimensional case (only axial deformation), there is only one strain component namely 
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With u given by Equation 2.2-5,  
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but d is the nodal displacements (constants), and not a function of x, 
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where the matrix B  is called the strain-displacement matrix, containing shape function 

gradients, ⎥⎦
⎤

⎢⎣
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LL
B 11 .  The bar element has constant strain. 

 

To formulate the stiffness matrix, we need to look at energy principles (see section 3.1 of the 

textbook).  First assume a linear elastic spring/bar, with the force-displacement behavior as in 

Figure B.2-1.   
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The increment in work done on the bar is given by 

 duFdW =  

but  uFukduukWduukdWukF
2
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2
1 2

===→=→= ∫    B.2-5 

This is the total work done on the bar when extended by a distance u.  In the case of multi 

degrees-of-freedom, the work is given by 

 FdW T

2
1

=          B.2-6 

where d  is the vector containing nodal displacements u. The work done on the bar, Equation 

B.2-6, goes into increasing the strain energy.  The increment in strain energy per unit volume 

is given by 

 εσ ddEv =  

but dBEE == εσ  (using Equation 2.2-6) 

thus 2

2
1 εεεεσ EdEdEv === ∫∫  

In the case of multi degrees-of-freedom, this becomes 

 εε EE T
v 2
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The total strain energy is calculated over the total volume of the element, 

k 

u 

F 

1 

du 

dF 

Figure B.2-1 –  Force –displacement relation for simple spring/bar element 



Eindige Element Metodes 414 / Finite Element Methods 414 

 

11 of 27 

 dVEE
V

T

∫= εε
2
1         B.2-7 

Making use of Equation 2.2-6 
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Conservation of energy states that the work (Equation B.2-6) input should equal the change in 

strain energy (Equation B.2-8), 
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From this it is clear that 
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which is similar to the one-dimensional expression F = k d, and we conclude that 
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which is the general formulation for the stiffness matrix of an element. 

 

Let’s now apply this formulation to calculate the stiffness of the bar element.  Using the 

definition of B from Equation 2.2-6, 
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where the cross section area A is taken to be constant. 
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This result is the same as obtained using the direct method, Equation 2.2-2. 

 

Note: The stiffness matrix formulation given in Equation 2.2-4 can be applied to any element.  

For different elements it would only be the strain-displacement matrix B that differs and for 

two-dimensional and three-dimensional problems E is replaced by a matrix containing both E 

and Poisson’s ratio v. 

 

The process of assembly and constraints (reduced stiffness matrix) developed for spring 

elements can also be applied to the bar elements developed in this section.  It is just the 

formulation of the element stiffness matrix that is different (although the same size 2 x 2). 
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2.3 Stiffness Matrix Formulation:  Beam Element 
 

2.3.1  The Direct Method:  Simple Plane Beam 
 

Figure 2.3-1a shows a simple plane beam element.  The elastic modulus E and moment of 

inertia I are constant along the length of the beam.  Only lateral displacements are assumed v 

= v(x).  For a beam only loaded at the end nodes with forces and moments, it can be shown 

from elementary beam theory that the lateral displacement is a cubic function in x.  Each of 

the two nodes has three degrees-of-freedom, two translational and one rotational. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3-1 –  Simple plane beam element and its nodal dof and shape function definitions 
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When the stiffness matrix for the bar element was developed, it was shown that the jth column 

in the stiffness matrix represents the nodal forces (at each of the nodes respectively) that 

should be applied to have unit displacement (rotation) at the jth degree-of-freedom and zero 

displacement (rotation) at all the other degrees-of-freedom.  This procedure will be followed 

to calculate the beam stiffness matrix.  Assume the degrees-of-freedom are assembled as 

[ ]Tvvd 2211 θθ= .   

 

The first degree-of-freedom is v1.  Set v1 = 1 and all other degrees-of-freedom equal to zero.  

This is indicated in Figure 2.3-1c.  Forces and moments should be applied at all degrees-of-

freedom.  What should these forces and moment be?  Let’s return to Basic beam theory2 as 

indicated in Figure B.3-1. 

 

 

 

 

 

 

 

 

 

 

Using Figure B.3-1, the lateral displacement of node 1 (Figure 2.3-1c) can be written in terms 

of the applied moment and force at node 1: 
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the slope (angle) at node 1 should also be zero: 
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1 2
0 +−==θ        B.3-2 

 

                                                 
2 Benham, PP, Crawford, RJ, Armstrong, CG, Mechanics of Engineering Materials, Second Edition, 1996, 

Addison Wesley Longman Limited. 

Figure B.3-1 –  Basic beam theory 
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Solving these two equations simultaneously for k11 and k21 
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From equilibrium, we can write the following two equations, 

Sum of forces in y-direction:  31110 kk +=  

Sum of moments around node 2: Lkkk 1141210 −+=     B.3-4 

Using Equation B.3-3, these can be solved: 
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Following this procedure for all the other degrees-of-freedom, the final element stiffness 

matrix is obtained, 
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Note:  This element has 4 degrees-of-freedom, two per node. 

 

The equilibrium equation for this element 
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2.3.2  The Formal Procedure: Simple Plane Beam 
 

In the case of a beam element the stiffness matrix is given by an expression similar to that in 

Equation 2.2-4, 

 dVBIEBk
V

T

∫=         2.3-3 

 

where B is now the matrix given the relation between nodal displacement and beam 

curvature 2

2

x
v

∂

∂ .  The lateral displacement of the beam is given in terms of generalized 

coordinates iβ   

 3
4

2
321 xxxv ββββ +++=        2.3-4 

The β ’s can be written in terms of nodal displacements/rotations making use of a similar 

procedure used for bar elements.  For example at x = 0, v = v1 and 
0

1
=

==
xdx

dvθθ . 

The result is given by 
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v

v

NNNNv =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2

2

1

1

4321

θ

θ
      2.3-5 

The shape functions are given in Figure 2.3-1.  The curvature of the beam element, 

 dBdN
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d
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=
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       2.3-6 

 

where the strain-displacement matrix is (using the shape function definitions) 

 ⎥
⎦

⎤
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⎡
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L
x
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x
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x

LL
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L
B    2.3-7 

After substitution of Equation 2.3-7 into 2.3-3, and some manipulation, the same stiffness 

matrix as in Equation 2.3-2 is obtained. 
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This formulation gives an exact solution to the beam problem under the following conditions: 

• The beam is initially straight 

• Linear elasticity assumed 

• No taper – constant cross section 

• Under small deformations 

 

The stress in the beam is given by the well-known formula 
I

My
=σ where the moment M is 

given by  

 dBIE
dx

vdIEM == 2

2

       2.3-8 

 

 

2.3.2  2D Beam 
 

A 2D beam is a combination of a bar element and a simple plane beam element.  It can resist 

axial loads, transverse loads and bending moments.  The equilibrium equation (and stiffness 

matrix) is a combination of that of the bar element (Equation 2.2-7) and that of the simple 

plane beam (Equation B.3-6) 
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2.4 Properties of the Stiffness Matrix:  Avoiding Singularity 
 

The element stiffness matrix k and the global stiffness matrix K are symmetric.  This is, 

however, only true if the material behaviour is linear.  The diagonal components of both 

stiffness matrices are always positive. 

 

If a structure is unsupported or inadequately supported, K  can be singular, and the system 

equations unable to be solved.  To prevent this, the structure must be supported (constrained) 

to avoid rigid body motion. A structure may also have a singular K if it contains a 

mechanism. 

 

2.5 Mechanical Loads:  Stresses 
 

Loads can be either applied forces or moments at a point, or surface pressure, or body forces 

(inertia, gravity).  Concentrated forces and moment are applied at nodes (point loads).  

Moments, however, can only be applied at the node if at least one element connected to this 

node, has a rotational degree of freedom, e.g. a beam element. 

 

Distributed loads, such as pressure, acts on elements between the nodes.  These distributed 

loads must be converted to equivalent nodal loads, since in FEM, loads can only be applied at 

nodes.  For bar elements, the following procedure can be used to obtain work-equivalent 

loads.   

 

Take a distributed load q [N/m], acting on a bar element as indicated in Figure 2.5-1a. The 

load q causes the bar to extend.  The nodal displacements would be u1 and u2.  The work done 

by the distributed load is given by force times displacement.  With the nodal displacements 

known, the displacements within the element follow from the shape functions, Ndxu =)( .  

The work is given by ∫∫ =
LL

dxxqNddxxqxu )()()( .  We are now looking for nodal forces Fe 

that would result in the same amount of work being done - work-equivalent nodal  loads.   
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 ∫=
L

e dxxqNdFd )(         B.5-1 

but since d  are constant nodal displacements 

 

 ∫∫ =→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

L
e

L
e dxxqNFdxxqNdFd )()(     B.5-2 

In the case of a point load F, it becomes 

 FNFdxFNdFd e
L

e =→= ∫       B.5-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following example demonstrates the procedure where a distributed and a point load is 

applied to a single bar element, Figure B.5-1.  The distributed load q varies linearly from q1 at 

node 1 to q2 to at node 2,  

 21)( q
L
xq

L
xLxq +

−
=        B.5-4 

and a point load F is applied at a distance 
3

2Lx = .  The work equivalent nodal forces are 

calculated using Equation B.5-2 and B.5-3 

 

 FNdxxqNF
L

e += ∫ )(        B.5-5 

Figure 2.5-1 –  Uniformed distributed axial force q on a two node bar element. 
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Making use of the shape function definition of a bar element, Equation 2.2-5 
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In the case where the load is uniformly distributed, q1 = q2 = q, and F = 0, 
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This is demonstrated in Figure 2.5-1b, where the total force is qL.  Figure 2.5-1c and d shows 

how the nodal loads add together when more than one element is assembled. 

  

q1 

q2 

F 

2L  /3 

Figure B.5-1 –  Equivalent nodal loads for a single bar element 
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2.6 Thermal Loads:  Stresses 
 

When the temperature of an unrestrained body is uniformly increased, the body will deform, 

but the stresses will be unchanged.  Temperature gradients are, however, more complicated, 

and thermal stresses can occur even if the body is unrestrained.  In this course only a uniform 

temperature change will be treated.  Software does these calculations automatically, with the 

user only specifying the temperature change.  The next example, however, shows how the 

thermal changes are handled. 

 

 

 

 

 

 

 

 

 

Figure 2.5-1a shows two bar elements assembled together.  A load P is applied at node 2 in 

the negative x-direction, and a load P at node 3 in the positive x-direction.  Let the cross 

sectional area A, elasticity E and the coefficient of thermal expansion α be constant over the 

bar.   

 

Due to the temperature change alone, the bar will extend, but the stress will be unchanged.  

The change in strain can be modelled by applying nodal loads, but these loads will also cause 

the stress to increase.  The solution is to apply thermal loads, that should yield the same strain 

deformation as the temperature change, and then to subtract the stress caused by the thermal 

load.  

 

The definition of the coefficient of thermal extension T∆= αε  is used to calculate the 

thermal loads, 

 TEAAEAFT ∆=== αεσ        B.6-1 

Figure 2.5-1 –  Two element bar model loaded by externally applied load P and by uniform heating an 

amount ∆T 
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This load would cause the same increase/decrease in strain as the increase/decrease in 

temperature T∆ .  The element stiffness matrix is given by 
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Assembly of elements yields the global equilibrium equation 
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where 1R  is the support reaction at node 1.  The stiffness matrix in Equation 2.6-2 is singular.  

Singularity is removed by the support conditions, i.e. removing row 1 and column 1. 
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Solving this for the nodal displacements, and making use of Equation B.6-1, 

 
AE
PLTLuTLuu +∆=∆== αα 2,,0 321      2.6-4 

To calculate the stress in each of the elements, we have to remove the stress due to thermal 

loads.   

 012
1 =∆−

−
=∆−= TE

L
uuETEE xx ααεσ      2.6-6a 

 
A
PTE

L
uu

ETEE xx =∆−
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=∆−= ααεσ 23
2     2.6-6b 

These results can be checked through inspection! 
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2.7 Transformations 
 

The textbook only handles transformations in Chapter 4, section 4.3.  However, it fits better 

in Chapter 2 and is needed before a complete bar/beam example can be done. 

 

We have to diffirentiate between local coordinates and global coordinates.  The user defines 

the geometry of a FEM model in the global coordinate system XYZ.  Software typically 

generates an element stiffness matrix in local coordinates xyz, then automatically converts to 

global coordinates for assembly of elements.  Global and local systems may be parallel or 

even coincident.   

 

The stiffness matrix of a element is most easily written in local coordinates, but it may be 

arbitrary orientated in global coordinates.  Rather than formulate the element stiffness matrix 

in global coordinates, it is easier to transform the stiffness matrix to global coordinates.  

Transformation is carried out outomatically by software.  Let’s first look at the transformation 

of a single point in two-dimensional space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x
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Y

xp 

yp 

Xp 

Yp 

Ө 

xp 

Ө 

Xp cosӨ 

Yp sinӨ 

Figure B.7-1 –  Coordinate transformation of a single point in two-dimensional space 
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From figure B.7-1, the following relations can be written, 
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where T~ is called the tranformation matrix which is orthogonal: TTT ~~ 1
=

−
. 

 

2.7.1  Bar Element 

 

Let u’1 and u’2 be the nodal displacements in local coordinates of a bar element with two 

nodes and (u1, v1) and (u2, v2) the nodal displacements in global coordinates.  The 

transformation becomes 
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or dTd =′  where θθ sin,cos == sc  and T  is build up from components in T~ , 

Equation B.7-2.  Similarly, the nodal forces can be written as 

 fTf =′          B.7-4 

The equilibrium equation in local coordinates 
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Using the transformations defined in Equation B.7-3 and B.7-4 

 fTdTk =
′          B.7-6 
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Multiplying both sides by TT , 

 fdTkT T
=

′         B.7-7 

where the force f  is in global coordinates and the stiffness matrix in global coordinates is 

given by 
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The element stress is calculated using 
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2.7.1  2D Beam Element 

 

The equilibrium equation for a 2D beam element is given in Equation B.3-7, 
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Both the u and v displacements need to be rotated in the case of a local coordinate system not 

aligned with the global coordinate system.  The rotational degree-of-freedom Ө, however, 

remains unchanged since the local and global z-axis (out-of plane) remains aligned no matter 

what the rotation (2D rotation).  For a beam element, the transformation matrix can be written 

as 
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which is build up from components in T~ , Equation B.7-2.  
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The following example demonstrates the use of coordinate transformation for bar elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.7-2 shows two identical bar elements: A, E, length = L.  

Find: 

1)  The unrotated stiffness matrix of each element. 

2) The rotated stiffness matrix of each element. 

3) The global unconstrained stiffness matrix. 

4) The global constrained (reduced) stiffness matrix. 

5) The global force vector. 

6) The displacement of node 2. 

7) The stress in each bar. 
 

P1 

P2 
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45° 

45° 

1

2

3

Element 1 

Element 2 

Figure B.7-2 –  Example:  Coordinate transformation 
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Example:  Coordinate Transformation

kPa 1 10
3
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PROBLEM:
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Find 1)  The unrotated stiffness matrix of each element. 

2) The rotated stiffness matrix of each element 

3) The global unconstrained stiffness matrix 

4) The global constrained (reduced) stiffness matrix 

5) The global force vector 

6) The displacement of node 2 

7) The stress in each bar. 
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u1
v1

k1
A E⋅

2 L⋅

1
1
1−
1−

1
1
1−
1−

1−
1−
1
1

1−
1−
1
1

⎛⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟

⎠

⋅= u2

v2

For element 2 the rotation angle is θ2 135deg:=

u2 v2 u3 v3

u2
v2

k2
A E⋅

2 L⋅

1
1−
1−
1

1−
1
1
1−

1−
1
1
1−

1
1−
1−
1

⎛⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟

⎠

⋅=
u3
v3

Solution 3:

A E⋅

2 L⋅

1
1
1−
1−
0
0

1
1
1−
1−
0
0

1−
1−
2
0
1−
1

1−
1−
0
2
1
1−

0
0
1−
1
1
1−

0
0
1
1−
1−
1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⋅

u1

v1

u2

v2

u3

v3

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⋅

Fx1

Fy1

Fx2

Fy2

Fx3

Fy3

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

=

Solution 1:

In local coordinates the stiffness matrix is:

u1 u2
u1

k1 k2= A E⋅
L

1
1−

1−
1

⎛
⎜
⎝

⎞

⎠
=

u2

Solution 2:

For element 1 the rotation angle is θ1 45deg:=

cos θ1( ) 0.707=
2

2
0.707=

Using Equation B.7-8 (Lecture notes)

u1 v1 u2 v2 Global numbers:
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for element 2σ2
E
L

2
2

⋅ 1− 1− 1 1( )⋅
L

A E⋅
⋅

P1

P2

0
0

⎛⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟

⎠

⋅=
2

2 A⋅
P1 P2−( )⋅=

for element 1σ1
E
L

2
2

⋅ 1− 1− 1 1( )⋅
L

A E⋅
⋅

0
0
P1

P2

⎛⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟

⎠

⋅=
2

2 A⋅
P1 P2+( )⋅=

Using Equation B.7-9 (Lecture notes)

Solution 7:

u2

v2

⎛⎜
⎜⎝

⎞

⎠

L
A E⋅

P1

P2

⎛⎜
⎜⎝

⎞

⎠
⋅=

u2

v2

⎛⎜
⎜⎝

⎞

⎠

A E⋅

2 L⋅

2
0

0
2

⎛
⎜
⎝

⎞

⎠
⋅

⎡
⎢
⎣

⎤
⎥
⎦

1− P1

P2

⎛⎜
⎜⎝

⎞

⎠
⋅=

Solution 6:

Freduced
P1

P2

⎛⎜
⎜⎝

⎞

⎠
=

Solution 5:

v2
Kreduced

A E⋅

2 L⋅

2
0

0
2

⎛
⎜
⎝

⎞

⎠
⋅=

u2

v2u2

Node 1 and Node 3 are fully constrained in the x- and y-directions:  Delete row and column 
and 5,6 respectively:

Solution 4:
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