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The textbook starts immediately with the description of bar and beam elements. We will first
do an even simpler element — the spring element. The reason for this is that we already know
the stiffness of the spring £&. With several springs in a system, the global stiffness matrix
needs to be assembled. This procedure can easily be explained using spring elements. We
will then move onto the bar and beam elements where we will calculate the stiffness matrix
for each respectively. The process of assembling the element stiffness matrices into a global

stiffness matrix is the same for any type of element.
B.1 Spring Elements and Assembly

B.1.1 Single Element

; .

/

1 2
[Z31 k u

Figure B.1-1 — Single spring element with stiffness &

Assume that the spring is linear elastic, following the relation /' =kA. Let node 2 be
displaced by a distance u; and node 1 by a distance u; with u; > u;. Consider the equilibrium

of forces for the spring under these displacements.
Ji=—k(uy —uy)
S =k(u, —u,) B.1-1

Equation B.1-1 can be written in matrix notation,
k  —k|| u, £
= B.1-2
-k k ||u, 5
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stiffness matrix x  displacement vector = force vector

Lets analyse Equation B.1-2 by setting u; =0,

5T - T

and similarly by setting u; =0,

PN IR

From this it can be seen that the first column in the stiffness matrix gives the force at each
node in order to have a unit displacement at node 1 and zero displacement at all the other
nodes. Similarly, the second column in the stiffness matrix gives the nodal forces with a unit
displacement at node 2 and zero displacement at all the other nodes. This procedure will be

used later to determine the stiffness matrix for beam elements.
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B.1.2 System of Spring Elements
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Figure B.1-2 — System of single spring elements

For element 1, the element nodes are 1 and 2 as in Figure B.1-1. These nodes correspond to
the global nodes 1 and 2, as indicated in Figure B.1-2. For this element, the equilibrium

equation is given by

k _ k u elel
[ 1 ']{ '}: flﬂ B.1-4a
—k k u, 1
For element 2, the element nodes 1 and 2 correspond to global nodes 2 and 3 respectively,
k _ k u ele2
[ i 2}[ 2} f2,2 B.1-4b
—ky, ky Ju, £
Equilibrium of nodal forces can be written as

elel elel ele2 ele2

E=f » FBE=fH +fL, FE=f B.1-5

where F' indicates global nodal forces and f element nodal forces. Making use of Equation

B.1-4, the equilibrium equations Equation B.1-5 follows,
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elel

F1 =f1 zklul _k1u27
elel ele2
F,=f, +/, =—kyu, + (k, +ky)u, —kyus,
ele2
F, = f; =—k,u, +k,u,
In matrix form
k, -k, 0 |l u F,
-k, |k +k,| —k||u, |=|F,
0 -k, ky ||| u, F,
KD=F

B.1-6

B.1-7

The two individual stiffness matrices for element 1 and element 2 are indicated in Equation

B.1-7. Equation B.1-7 is the global set of equations, with K the global stiffness matrix, D

the global nodal displacements and F the global nodal force vector.

An alternative way of assembling the global stiffness matrix follows: The stiffness matrix for

each element can be “enlarged”,

The two equations can now simply be added together,

elel

k, -k 0
—k kO
0 0 0]
0 0 0
0 k, -k,
0 —k, K

U, /i
U, |= f;/e1 for element 1
U, 0
1w, 0
u, |= f;m for element 2
| u3 fSeleZ

B.1-8
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k, —k, 0 | u A F

—k ktk, —k |u, |=| 52| B.1-9
ele2

0 —k, ky |lu, fs F;

B.1.3 Boundary Conditions

Can Equation B.1-9 be solved for the nodal displacements? In order to accomplish this, we

need to calculate the inverse of the stiffness matrix, D = K 'R
The determinant of the stiffness matrix is given by,
detK = Fk ((k1 +k, )k, —kj)— Kk, = kk,+k -k, -k k,=0 B.1-10

The determinant is equal to zero, which means that the inverse of K is not defined and the

nodal displacements can not be solved for.

In physical terms this means that the system (springs) are not constrained, i.e. rigid body
motion is possible. To avoid rigid body motion, constraints should be applied. The most

common constraint is to “fix”” one or more of the nodes.

For this example, let’s fix node 1: u; = 0 and F, = F; = P. The external force applied at

node 1 would be the reaction force, an unknown. Equation B.1-7 can be written as

which reduces to

[k, +k,

L _kz

_kz

k,

]

[k, -k 0 o] [F
—k, k+k, —k,|u,|=| P
0 —k, ky |u;] | P

B.1-11
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and  F, =—ku,, the reaction force. This is equivalent to deleting row 1 and column 1 in

the stiffness matrix. If it was node 2 that was constrained, it would have been row 2 and

column 2 that would have been deleted.

The reduced stiffness matrix is no longer singular, and the system can be solved for the

unknown nodal displacements at node 2 and node 3 (node 1 is fixed).
| 1 2P
NV /S L YR
= = = B.1-12
| /41 P 2P/ P
kl kl k2 kl k2

and the reaction force follows from Equation B.1-11, F, =—-ku, =-2P, which ensures

Uy Uy

equilibrium.

Note: The unconstrained system has 3 degrees-of-freedom (one displacement per node). The

constrained system has only 2 degrees-of-freedom.

Now, with the knowledge of assembling and boundary conditions know, we can move onto
more complex elements. The process of assembling a global stiffness matrix and applying
boundary conditions are the same for any type of element, it is just the formulation (and size)

of the stiffness matrix that may differ.
2.2 Stiffness Matrix Formulation: Bar Element

The bar element is similar to a spring element, i.e. it can only resist an axial force. Each bar
element has 2 nodes, i.e. 2 degrees-of-freedom. Let’s look at a simple bar element with

constant area A, Young’s modulus £ and length L:

o F
oc=Fs > &g=—, o=— 5 £=——
E A AE

but also

gzﬁ —> AL=¢L —>AL:ﬂ — F:£M
L AE L

Comparing this to a spring element,
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F =kAL —>sz B.2-1

2.2.1 The Direct Method

The direct method of calculating the stiffness matrix was used for the spring element. Above
it has been shown that the stiffness of a bar element is given by Equation B.2-1. Making use

of Equation B.1-2, the stiffness for the bar element follows as,

1 -1
k,, = AE 2.2-2
Li-1 1

This, of course, assumes small deformations and elastic materials.

2.2.1 The Formal Procedure

u= .'\"1{!]_ + N2E|‘2

Figure 2.2-2 — Shape functions N, and N, for a two-node

Let’s write an expression for the axial displacement u# of an arbitrary point on the bar.

Assume that node 2 is fixed, and node 1 is given a unit displacement, Figure 2.2-2a. The

displacement at node 2 will be zero, and the displacement at node 1 should be unity (1). The

deformation, for example, in the centre of the bar should be 0.5. This is written as

_L—x
L

u u, B.2-2

where x starts from node 1 as in the figure, and u; is the displacement of node 1. The same

can be done with node 1 fixed and node 2 given a unit displacement,
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u= iul B.2-3
L

Combining Equation B.2-2 and B.2-3 in matrix notation

_ u .
uz[L X ﬁ} ] or u=N d 2.2-5
L L 0, —

where N is called the shape function matrix and d the vector of element nodal degrees-of-

freedom (translation in this case, but could also be rotations as in beam elements).

Let’s now return to the definition of strain given in Chapter 1 (notes). Since this is a one-

dimensional case (only axial deformation), there is only one strain component namely

E. = 6_14 B.2-4
ToOx
With u given by Equation 2.2-5,
e =M _2[§ d],
ox Ox
but d is the nodal displacements (constants), and not a function of x,
gx=a—”=a—ﬁa7=§3 2.2-6
ox ox -

where the matrix B is called the strain-displacement matrix, containing shape function

gradients, B = {—% %} . The bar element has constant strain.

To formulate the stiffness matrix, we need to look at energy principles (see section 3.1 of the
textbook). First assume a linear elastic spring/bar, with the force-displacement behavior as in

Figure B.2-1.
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du

Figure B.2-1 — Force —displacement relation for simple spring/bar element

The increment in work done on the bar is given by
dW =Fdu

but F=ku —>dW=kudu—>W=J.kudu=%ku2=%Fu B.2-5

This is the total work done on the bar when extended by a distance u. In the case of multi

degrees-of-freedom, the work is given by

W=—d F B.2-6

N | =

where d is the vector containing nodal displacements u. The work done on the bar, Equation
B.2-6, goes into increasing the strain energy. The increment in strain energy per unit volume
is given by

dE, =ods
but oc=Ee¢=EBd (using Equation 2.2-6)

2

thus Evz.[ adgzj.Eg dez%Eg

In the case of multi degrees-of-freedom, this becomes

1_r . _

E =—¢ FE¢
2

v

The total strain energy is calculated over the total volume of the element,
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E=[-z Ezdv B.2-7

(BaYE(Bd)av=[+ a"B'EB dav

B.2-8

_Lgr (jEEE dV] d
2 14

Conservation of energy states that the work (Equation B.2-6) input should equal the change in

strain energy (Equation B.2-8),

w =E
—r — —r - - B.2-9
LarEl Ll [B'EB av|d
2 2 )
From this it is clear that
_ —r _
F=U§ EB dV] d B.2-10
Vv
which is similar to the one-dimensional expression ' = k d, and we conclude that
k= j B'EB dv 2.2-4
vV

which is the general formulation for the stiffness matrix of an element.

Let’s now apply this formulation to calculate the stiffness of the bar element. Using the

definition of B from Equation 2.2-6,

T
E:J‘{_l l} E{_l l} Adx
WL L L

where the cross section area A is taken to be constant.
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1 L L
_ - 2 2 2 2
k= [ E{—l l} dde=£4| £ Llav=uEr) Lo L
g L H=— — - 2
L L L L L
2.2-7
1 1
— T 1 -1
= 4E| L L|_AE
SRS T B I
L L

This result is the same as obtained using the direct method, Equation 2.2-2.

Note: The stiffness matrix formulation given in Equation 2.2-4 can be applied to any element.
For different elements it would only be the strain-displacement matrix B that differs and for

two-dimensional and three-dimensional problems £ is replaced by a matrix containing both £

and Poisson’s ratio v.
The process of assembly and constraints (reduced stiffness matrix) developed for spring

elements can also be applied to the bar elements developed in this section. It is just the

formulation of the element stiffness matrix that is different (although the same size 2 x 2).

12 of 27



Eindige Element Metodes 414 / Finite Element Methods 414

2.3 Stiffness Matrix Formulation: Beam Element

2.3.1 The Direct Method: Simple Plane Beam

Figure 2.3-1a shows a simple plane beam element. The elastic modulus £ and moment of
inertia / are constant along the length of the beam. Only lateral displacements are assumed v
= v(x). For a beam only loaded at the end nodes with forces and moments, it can be shown
from elementary beam theory that the lateral displacement is a cubic function in x. Each of

the two nodes has three degrees-of-freedom, two translational and one rotational.

Y, U wu
821 £l *539 2 M EJ ‘!s.; M3
1 p zf x IP 2{ x
) F F
" | L | vo 1 I 7 | 2
(a) (b)

3‘i » 3*2 3*44
oy [t R
k13 k14 b2 = k34

(e) (f)

Figure 2.3-1 — Simple plane beam element and its nodal dof and shape function definitions
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When the stiffness matrix for the bar element was developed, it was shown that the jth column
in the stiffness matrix represents the nodal forces (at each of the nodes respectively) that
should be applied to have unit displacement (rotation) at the /™ degree-of-freedom and zero
displacement (rotation) at all the other degrees-of-freedom. This procedure will be followed

to calculate the beam stiffness matrix. Assume the degrees-of-freedom are assembled as

d:[vl 6 v, ‘92]T-

The first degree-of-freedom is v;. Set v; = 1 and all other degrees-of-freedom equal to zero.
This is indicated in Figure 2.3-1¢c. Forces and moments should be applied at all degrees-of-
freedom. What should these forces and moment be? Let’s return to Basic beam theory?® as

indicated in Figure B.3-1.

Slope Deflection
M 2
A N M _M- B
. T 2ET "
-— ! — B
W 72 w3
1A g W e
T L Sopr TSET

Figure B.3-1 — Basic beam theory

Using Figure B.3-1, the lateral displacement of node 1 (Figure 2.3-1c) can be written in terms

of the applied moment and force at node 1:

3 2

=kl kL B.3-1

‘ 3EI 2EI’

the slope (angle) at node 1 should also be zero:
2

L L
0, =0=—L+k2—‘ B.3-2

2E1 EI

2 Benham, PP, Crawford, RJ, Armstrong, CG, Mechanics of Engineering Materials, Second Edition, 1996,
Addison Wesley Longman Limited.
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Solving these two equations simultaneously for &;; and /;;

12E1 6E1
kyy =— ky =— B.3-3
L L
From equilibrium, we can write the following two equations,
Sum of forces in y-direction: 0=k, +ky,
Sum of moments around node 2: 0=k, +k, —k,L B.3-4
Using Equation B.3-3, these can be solved:
12E1 6E 1
ky =—— ky=— B.3-5
L L

Following this procedure for all the other degrees-of-freedom, the final element stiffness

matrix is obtained,

12E1 SET _ 12ET 6ET ]
r r r r
SEI 4EI _6EI  2E1
LZ L LZ L
Kbean = _REI_6EI  12El _ 6EI 2.3-2
r r r r
SEI 2EI _6EI  4EI
L L r L

Note: This element has 4 degrees-of-freedom, two per node.

The equilibrium equation for this element

12E1 6EI _12EI 6EL | r ol

r r L r ! 1

6E1 4E1 6EI  2EI

- T~z T ||b M,

: : = B.3-6
_12Er _eEI  1EI _6EI| | F ’

r r r r 2 2
6E1 2E1 6EI  4EI
o2 e g |
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2.3.2 The Formal Procedure: Simple Plane Beam

In the case of a beam element the stiffness matrix is given by an expression similar to that in

Equation 2.2-4,

k = j B'EIB dv 2.3-3
14

where Bis now the matrix given the relation between nodal displacement and beam

2

ov . . . .
curvature —-. The lateral displacement of the beam is given in terms of generalized
Ox

coordinates f,

v=p+Box+ Bx + fix’ 2.3-4
The f’s can be written in terms of nodal displacements/rotations making use of a similar

d
procedure used for bar elements. For example atx=0,v=v;and 8 =6, = d_v .
X x=0

The result is given by

Vi
0, _

v=[N, N, N, N,] =Nd 2.3-5
V2

16; ]
The shape functions are given in Figure 2.3-1. The curvature of the beam element,
2 2
dv_1 4 y\7-pd 236
dx dx

where the strain-displacement matrix is (using the shape function definitions)

2.3-7

IS

2T T3

6 12x 4 6x 6 12x 2  6x
STt Tt )
L L L [ [ L L

After substitution of Equation 2.3-7 into 2.3-3, and some manipulation, the same stiffness

matrix as in Equation 2.3-2 is obtained.
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This formulation gives an exact solution to the beam problem under the following conditions:
e The beam is initially straight

e Linear elasticity assumed

No taper — constant cross section

Under small deformations

The stress in the beam is given by the well-known formula o = Ty where the moment M is

given by
d’ -
M=EI“2-EIBd 23-8
dx
2.3.2 2D Beam

A 2D beam is a combination of a bar element and a simple plane beam element. It can resist
axial loads, transverse loads and bending moments. The equilibrium equation (and stiffness
matrix) is a combination of that of the bar element (Equation 2.2-7) and that of the simple

plane beam (Equation B.3-6)

% O 0 - A_LE 0 O _ul ] _Faxiall ]
12EI 6EI 12EI 6EI
0 L3 7 0 - L3 ? vl F;‘ransl
6EL 4L _6EL 28
0 0 T |6 M, \
= B.3-7
L L u2 FaxialZ
_ 12E1 _ 6EI 12E1 _ 6EI
0 L3 LZ 0 L3 LZ V2 Eransz
6EL 28 _6EL 4K
i O e L 0 % L | _92 i L M2 n
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2.4 Properties of the Stiffness Matrix: Avoiding Singularity

The element stiffness matrix k and the global stiffness matrix K are symmetric. This is,

however, only true if the material behaviour is linear. The diagonal components of both

stiffness matrices are always positive.

If a structure is unsupported or inadequately supported, K can be singular, and the system
equations unable to be solved. To prevent this, the structure must be supported (constrained)
to avoid rigid body motion. A structure may also have a singular K if it contains a

mechanism.
2.5 Mechanical Loads: Stresses

Loads can be either applied forces or moments at a point, or surface pressure, or body forces
(inertia, gravity). Concentrated forces and moment are applied at nodes (point loads).
Moments, however, can only be applied at the node if at least one element connected to this

node, has a rotational degree of freedom, e.g. a beam element.

Distributed loads, such as pressure, acts on elements between the nodes. These distributed
loads must be converted to equivalent nodal loads, since in FEM, loads can only be applied at
nodes. For bar elements, the following procedure can be used to obtain work-equivalent

loads.

Take a distributed load ¢ [N/m], acting on a bar element as indicated in Figure 2.5-1a. The
load g causes the bar to extend. The nodal displacements would be u; and u,. The work done

by the distributed load is given by force times displacement. With the nodal displacements

known, the displacements within the element follow from the shape functions, u(x)=d N .

The work is given by J u(x)q(x) dx = J.d N g(x) dx. We are now looking for nodal forces F,
L L

that would result in the same amount of work being done - work-equivalent nodal loads.
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d F, = [dNqg(x) dx B.5-1
L

but since d are constant nodal displacements

dF =d U N g(x) dxj — F, = J.]V q(x) dx B.5-2
L L
In the case of a point load F, it becomes
dF,=[dNFdx >F=NF B.5-3
L
Element Structure
1 q 2 q
¢ ¢ >
| L > I Ly I
(a) (c)
gL
1 2 qL gL oy
i ) G [ ——— f i
gL | L | 425 | 3@L=Lg :
2 2

(b) (d)

Figure 2.5-1 — Uniformed distributed axial force ¢ on a two node bar element.

The following example demonstrates the procedure where a distributed and a point load is

applied to a single bar element, Figure B.5-1. The distributed load ¢ varies linearly from ¢, at

node 1 to ¢, to at node 2,

L—x b
X)="—"g, += B.5-4
q(x) AL

and a point load F is applied at a distance x = 2?L The work equivalent nodal forces are

calculated using Equation B.5-2 and B.5-3

F,=[N q(x)dc+NF B.5-5
L
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q2
q1
q
® = =m > ¢
qF
I L ~.
| |
‘ 2L /3 .
| >

Figure B.5-1 — Equivalent nodal loads for a single bar element

L—x
Making use of the shape function definition of a bar element, Equation 2.2-5 N = fc ,
L
Equation B.5-5 becomes
[L—x] [L—x
= L L—x X L
Fe—‘!' x [ 7 q1+Lq2jdx+ x F
L L | L L 1,2t
T3
[L—x] L2
_fl L |[L=x, . X L
Fe—l x [ Vi q1+Lq2jdx+ % F
L L L L
_ 1[2a+a] | B4
F == + B.5-6
6 9, +2q, 2%

In the case where the load is uniformly distributed, ¢; = ¢, = ¢, and F =0,
qL/
F — 2 -
F=1, L/ B.5-7
2

This is demonstrated in Figure 2.5-1b, where the total force is gL. Figure 2.5-1c¢ and d shows

how the nodal loads add together when more than one element is assembled.
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2.6 Thermal Loads: Stresses

When the temperature of an unrestrained body is uniformly increased, the body will deform,
but the stresses will be unchanged. Temperature gradients are, however, more complicated,
and thermal stresses can occur even if the body is unrestrained. In this course only a uniform
temperature change will be treated. Software does these calculations automatically, with the
user only specifying the temperature change. The next example, however, shows how the

thermal changes are handled.

Il_).E @ 3 Fr @ Fo Fr @ Fr
. -~ > el - e e >
be—1L F‘,t.' L—%‘P FLH'\ Lé—f’—q

(a) (b) (c)

©
(]

Figure 2.5-1 — Two element bar model loaded by externally applied load P and by uniform heating an

amount AT

Figure 2.5-1a shows two bar elements assembled together. A load P is applied at node 2 in
the negative x-direction, and a load P at node 3 in the positive x-direction. Let the cross
sectional area A4, elasticity £ and the coefficient of thermal expansion o be constant over the

bar.

Due to the temperature change alone, the bar will extend, but the stress will be unchanged.
The change in strain can be modelled by applying nodal loads, but these loads will also cause
the stress to increase. The solution is to apply thermal loads, that should yield the same strain
deformation as the temperature change, and then to subtract the stress caused by the thermal

load.

The definition of the coefficient of thermal extension ¢ = a AT is used to calculate the

thermal loads,

F,=cA=EsA=a AEAT B.6-1
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This load would cause the same increase/decrease in strain as the increase/decrease in

temperature AT . The element stiffness matrix is given by

T I B ~_ [-F
ki=k,=— and the thermal load 7, =7,, = 2.6-1
L1-1 1 F,
Assembly of elements yields the global equilibrium equation
1 -1 0]y —F, +R,
% -1 2 —1||u,|=|F,-F,—-P 2.6-2
0 -1 1 ||u F,+P

where R, is the support reaction at node 1. The stiffness matrix in Equation 2.6-2 is singular.

Singularity is removed by the support conditions, i.e. removing row 1 and column 1.

2 —1|lu - P
AE = 2.6-3
Li-1 1 ||u| |F+P

Solving this for the nodal displacements, and making use of Equation B.6-1,

PL
u, =0, u,=aLAT, u,=2aLAT+— 2.6-4
AE
To calculate the stress in each of the elements, we have to remove the stress due to thermal
loads.
U, —u
c,=FEe, —aEAT =F —aEAT =0 2.6-6a
U; —u, P
o, =ng—aEAT=ET—aEAT=Z 2.6-6b

These results can be checked through inspection!
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2.7 Transformations

The textbook only handles transformations in Chapter 4, section 4.3. However, it fits better

in Chapter 2 and is needed before a complete bar/beam example can be done.

We have to diffirentiate between local coordinates and global coordinates. The user defines
the geometry of a FEM model in the global coordinate system XYZ. Software typically
generates an element stiffness matrix in local coordinates xyz, then automatically converts to
global coordinates for assembly of elements. Global and local systems may be parallel or

even coincident.

The stiffness matrix of a element is most easily written in local coordinates, but it may be
arbitrary orientated in global coordinates. Rather than formulate the element stiffness matrix
in global coordinates, it is easier to transform the stiffness matrix to global coordinates.
Transformation is carried out outomatically by software. Let’s first look at the transformation

of a single point in two-dimensional space.

Yp

) X}7
X, cosO

Figure B.7-1 — Coordinate transformation of a single point in two-dimensional space
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From figure B.7-1, the following relations can be written,
x, =X cos@+Y, sind
bt " B.7-1
y,=Y,cos0-X sin6

In matrix notation
X, cosd sinf || X,
v, —sind cos@ || Y, B.7-2

XP

[~

. .xp:
-1

where z is called the tranformation matrix which is orthogonal: z = z "

2.7.1 Bar Element

Let u’; and u’, be the nodal displacements in local coordinates of a bar element with two

nodes and (u;, v;) and (uy, v2) the nodal displacements in global coordinates. The

transformation becomes
u, c s 0 0l
= B.7-3
u, 0 0 ¢ s|u,

d'=Td where ¢c=cos@, s=sinf and T is build up from components in

or

Equation B.7-2. Similarly, the nodal forces can be written as

f=Tf B.7-4
The equilibrium equation in local coordinates
4|V —fui | | S
Li-1 1 u, S
B.7-5
ckd=f
Using the transformations defined in Equation B.7-3 and B.7-4
k Td=Tf B.7-6
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Multiplying both sides by T ! ,

T'kTd=f

B.7-7

where the force f is in global coordinates and the stiffness matrix in global coordinates is

given by

5 -
—C —CS
2
—-Ccs —S
2
C Ccs
2
(&) N i

The element stress is calculated using

0'=E£=EEJ=E{_LI

—scs]

B.7-8

B.7-9
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2.7.1 2D Beam Element

The equilibrium equation for a 2D beam element is given in Equation B.3-7,

AE _ AE .1 [
L 0 0 L O 0 ul Faxiall
12E1 6EL _12EI 6Bl '
0 JE I 0 3 5 Y Eransl
6EI 4E1 6El 2EI
0 = 40 || o M,
" ;. = B.7-10
_ AE AE '
L 0 0 L 0 0 U, F oz
_ 12E1 OEl 12E1 __ 6EI ! '
0 L I 0 r Ve v, trans?2
6EI 2E1 _ 6E AEL ’ '
I 0 - I 0 3 oo |le] LM

Both the # and v displacements need to be rotated in the case of a local coordinate system not
aligned with the global coordinate system. The rotational degree-of-freedom ©, however,
remains unchanged since the local and global z-axis (out-of plane) remains aligned no matter

what the rotation (2D rotation). For a beam element, the transformation matrix can be written

as
¢ s 0 0 0 O]
-s ¢ 0 0 0O
_ 0O 01 0 0 o0
T = B.7-11
0 00 ¢ s O
0 0 0 —-s ¢ O
L0 00 0 0 1]

which is build up from components in E , Equation B.7-2.
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The following example demonstrates the use of coordinate transformation for bar elements.

Figure B.7-2 shows two identical bar elements: 4, E, length = L.

Find:

P

Element 1

Figure B.7-2 — Example: Coordinate transformation

1) The unrotated stiffness matrix of each element.
2) The rotated stiffness matrix of each element.

3) The global unconstrained stiffness matrix.

4) The global constrained (reduced) stiffness matrix.
5) The global force vector.

6) The displacement of node 2.

7) The stress in each bar.
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CHAPTER 2

Finite Element Methods 414

Example: Coordinate Transformation

3
kPa:= 1.10 Pa

6
MPa := 1-10 Pa

3
kN:=110 N

6
MN:=1.10 N

PROBLEM:

P4

Element 1

Find 1) The unrotated stiffness matrix of each element.

2) The rotated stiffness matrix of each element

3) The global unconstrained stiffness matrix

4) The global constrained (reduced) stiffness matrix

5) The global force vector

6) The displacement of node 2

7) The stress in each bar.

Transformation Example.mcd
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Solution 1:
In local coordinates the stiffness matrix is:
up Uz

k_k_El—l\ul
1_2_L _11)u2

Solution 2:

For element 1 the rotation angle is 0, := 45deg

cos(el) =0.707 Q =0.707
2

Using Equation B.7-8 (Lecture notes)

Ut V1 Y2 V2 Global numbers:
11 -1-1) y
CAE[1 111 v
ToL|-111 1| w
111 1) v,

kq

For element 2 the rotation angle is 6, := 135deg

up Vvp Uz Vg

1 -1-11) u
Ae|-11 141 V2
2L 11 01 4

1 -1-11) v

ko

Solution 3:

11 -1-10 0)(u) (Fa)
1 1-1-100|" Fy1
AE|-1-12 0 -1 1]|Uu Fx2
200110 2 1 -1||v| |Fp
0 011 1 -1||uz| [Fyus
001 -1-11)(vg) [Fu
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Solution 4:

Node 1 and Node 3 are fully constrained in the x- and y-directions: Delete row and column
and 5,6 respectively:

u Vo
< _AE [2 0) Uy
reduced ~ 5
2L \0 2) vy
Solution 5:
i [Pl\
reduced =
P2 )
Solution 6:

Uz\{ﬁ (2 O\Il Py )
vp) 2010 2)] (P

up ) L P1)
vy) AE(Py)
Solution 7:

Using Equation B.7-9 (Lecture notes)

0)
_E Y2 L |0 {2
C51_:?.(_1 11 1).E. b, _Z.(P1+P2) for element 1
Py)
P
02:%?2.(—1 11 1).&. 02 :g.(pl_pz) for element 2
0)
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