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1 Finite Element Modelling for Stress Analysis, 1995, Robert D. Cook, John Wiley & Sons, Inc.  

Chapter and section numbering follows that of Cook, 1995.  Additional information is given using numbers 

starting with “A”. 
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1.1 The Finite Element Method 
 

The Mathematical Modelling of Physical Systems and specifically the field of 

Mechanics, can be subdivided into three major areas: Theoretical, Applied, and 

Computational. 

 

Theoretical Mechanics deals with fundamental laws and principles of mechanics studied 

for their intrinsic scientific value.  Applied Mechanics transfers this theoretical 

knowledge to scientific and engineering applications, especially through the construction 

of mathematical models of physical phenomena.  Computational Mechanics solves 

specific problems by simulation through numerical methods (such as FEM) implemented 

on digital computers.2  Figure A.1-1 shows the different approaches of modelling a 

physical system. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2 Finite Element Methods Lecture Notes: 1, Dr Majid Mirzaei, Dept. of Mechanical Eng., TMU 

Figure A.1-1 –  Modelling approaches.2 
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The finite element method is a numerical method used to solve problems in structural 

mechanics, thermodynamics, fluid flow, and much more.  The solution is approximate 

unless the problem to be solved is so simple that a convenient exact formula is available.   

 

Unsophisticated description:  It involves cutting a structure into several elements, 

describing the behaviour of each element in a simple way, then reconnecting elements at 

nodes (Figure 1.1-1).  This process results in a set of equations that needs to be solved 

simultaneously.  The equations can be either linear or non-linear.   

 

A large number of such elements are needed for two reasons:  (1) To accurately model 

the geometry of the structure for example, and (2) to approach the exact solution (called 

mesh refinement).  The large number of elements (equations) makes it impractical to 

solve by hand and computers are utilised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Typical 
element 

Typical 
node 

Figure 1.1-1 – A coarse-mesh, two dimensional model of a 

gear tooth.  All nodes and elements lie in the plane of the 

paper. 
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Sophisticated description: FEM is a piecewise polynomial interpolation.  That is, over 

an element, a field quantity such as displacement is interpolated from values of the field 

quantity at the nodes.  By connecting elements together, the field quantity becomes 

interpolated over the entire structure in piecewise fashion.  The “best” values of the field 

quantities at the nodes are those that minimize some function such as total energy.  The 

minimization process generates a set of simultaneous algebraic equations for values of 

the field quantity at the nodes, Figure A.1-2. 

 

This set of equations can be written in matrix form as RDK = , where D  is a vector of 

unknown nodal field quantities (such as displacements or temperature) to be calculated, 

R  is a vector of known loads and K  is a matrix of known material constants.  In stress 

analysis K  is known as the stiffness matrix.  The set of equations RDK = , is similar to 

the single equation of a linear spring xkF = , with F the force acting on the spring, k the 

spring stiffness and x the displacement. 

 

 

 

Figure A.1-2 –  Continuum vs discrete model. 
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FEM and the typical user:  A typical FEM user asks what kinds of elements should be used, 

how many elements?  Where should the mesh be fine and where may it be coarse?  Can the 

model be simplified (symmetry)?  Is the important behaviour static or dynamic?  How 

accurate will the answers be and how can they be checked?  One needs to understand the 

mathematics behind FEM to answer these questions.  A competent user must understand how 

the different elements behave in order to choose the type, size and shape.  FEM is based on 

mathematical theory and several assumptions and limitations exist.  The user must be aware 

of these limitations when creating a FEM model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1-3 shows the four conditions that must always be satisfied in a FEM model3.  

Equilibrium ensures that either Hook’s law (Quasi-static analysis) or Newton’s law (Dynamic 

analysis) is satisfied.  Compatibility ensures that no gaps can form within the material.  The 

constitutive model is also called the material model.  Examples of material models are:  

Linear Elastic, non-linear elastic, and plastic models such as von Mises, Mohr-Coulomb and 

                                                 
3 Ansys, Computational Mechanics, AAU, Esbjerg. 

Figure A.1-3 –  Conditions that must be satisfied. 3 
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Drucker-Prager.  Boundary conditions are specified at the boundary of the model and can be, 

for example, fixed constraints or moving boundaries. 

 

 

 

An analyst unable to do even a crude pencil-and-paper analysis of the problem probably 

does not know enough about it to attempt a solution by FEM! 

 

Advantages of FEM 

• Irregular Boundaries 

• General Loads 

• Different Materials 

• Boundary Conditions 

• Variable Element Size 

• Easy Modification 

• Dynamics 

• Nonlinear Problems (Geometric and/or Material)  

 

 

Disadvantages of FEM 

• An approximate solution 

• An element dependent solution (element size and shape) 

• Error in input data such as geometry and material properties 

 

The power of FEM is its versatility.  The structure analysed may have arbitrary shape, 

arbitrary supports (constraints) and arbitrary loads.  On the other hand, analytical 

solutions exist only for a couple of simple problems. 
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1.2 Elements and Nodes 
 

Finite elements resemble fragments of the structure.  Nodes appear on element boundaries and 

serve as connectors that fasten elements together.  In Figure 1.2-1, elements are triangular or 

quadrilateral areas and nodes are indicated by dots. 

 

 

 
 

 

 

All elements that share a node have the same displacement components at that node.  

Normally element types are not mixed (triangular and quadrilateral), but this is only for 

demonstration purposes.  Each element is restricted in its mode of deformation.  This prevents 

that gaps would from between elements. 

 

Consider the plane triangular element in Figure 1.2-1b.  Let u and v be the x and y 

displacements of any point within the element or on the element boundaries.  Using linear 

polynomials in x and y: 

 

 yxu 321 βββ ++=         1.2-1a 

yxv 654 βββ ++=         1.2-1b 

Figure 1.2-1 –  (a) A flat bracket modelled by several element types. (b) One of the elements, 

a “constant strain triangle”.  All nodes and elements lie in the plane of the paper. 
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where the β ’s are called “generalized coordinates”, or displacement amplitudes.  1β  and 4β , 

for example, are rigid body displacements of the element in the x and y directions 

respectively.  The other β ’s are amplitudes of linearly varying displacements in the x and y 

directions respectively.  The β ’s are however still undefined, but it can be written in terms of 

nodal displacements.   

___________________________________________________________________________ 

Why do we need the displacements in terms of the nodal displacements?   

The result of the system of equations, RDK = , is D , the nodal displacements.  With the 

nodal displacements known, the displacements can be calculated at any position within the 

element using equations such as 1.2-1.  With the displacements known, the gradients of 

displacement is used to define the strains, and the strains are used to calculate the stresses. 

___________________________________________________________________________ 

 

Let the nodal displacements for node 1 be u1 and v1 in the x- and y-directions respectively; and 

similarly for the other nodes u2, v2, u3, v3.  Looking at Figure 1.2-1, the following conditions 

can be used: 
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Substituting the above conditions into Equation 1.2-1, yields six equations in six unknowns.  

Solving for the β ’s yield 
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This can also be written in terms of the shape functions Ni. 
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or in matrix notation 
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To calculate the displacement of any point within the element, six quantities should be 

known; the nodal displacement components – two components at each of the three nodes.  

This element is said to have six degrees-of-freedom (dof).  The displacement field u = u(x) 

and v = v(x) can now be used to calculate the strain components within the element. 
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___________________________________________________________________________ 

What is the definition of strain in a continuum?   

Under the assumption of small deformation gradients, the linear strain tensor is given by 
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Assuming two-dimensional conditions, the strain tensor can be written as 
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In Cook’s notation we have ux = u, uy = v, xx = x and xy = y with the strain tensor given by 
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Comparing this tensor with the definition of Engineering Strain, 
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See Appendix A – The Strain Tensor, for more details and the physical meaning of each 

component. 

___________________________________________________________________________ 
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With the displacement field given by Equation 1.2-1 and 1.2-3, the strain can be calculated 

within the element, 
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From these results it can be seen that all the strain components are constant within the 

element, i.e. they are not dependent on x or y.  This type of element is therefore called a 

constant strain triangle.    

 

Let’s analyse the deformation of the element and specifically the deformation of the sides.  

Along side 1-3, the x-coordinate is zero.  Setting x = 0 in Equation 1.2-3a and b, 
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From this it is clear that u and v is only a function in y.  Furthermore, the displacement 

components depend only on the nodal displacements of node 1 and node 3, the two nodes 

connecting side 1-3.  This indicates that side 1-3 will remain straight, and the same can be 

demonstrated for the other sides of this element.  Further, the same can be shown for 

neighbouring elements.  This shows that, for two neighbouring elements, the sides will remain 

straight and no gaps can form between the elements – fulfils the compatibility requirements. 

 

The same can be shown for all other types and shapes of elements – although the algebra can 

be more complicated and tedious☺.    
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Element L in Figure 1.2-1 is a six noded triangular element, i.e. each of the sides have 3 nodes 

available.  With three nodes per side, it means that the deformation of the side can be 

quadratic (second order).  Further, each of the six nodes will have two degrees-of-freedom 

(translation in the x- and y-direction respectively), and thus the element will have a total of 12 

degrees-of-freedom.  The displacement field can be written in terms of these 12 degrees-of-

freedom, 

 2
65

2
4321 yxyxyxu ββββββ +++++=      1.2-5a 

2
1211

2
10977 yxyxyxv ββββββ +++++=      1.2-5b 

 

Making use of Equation 1.2-4, it is clear that the strain components will have both constant 

and linear terms.  This element is more competent and complex compared to the constant 

strain element.  Another question arises:  Is it better to use many simple elements or a few 

complex elements?  The answer to this question is not simple and will be dealt with later in 

the course. 

 

1.3 Modelling the Problem and Checking Results 
 

1. Modelling requires that the physical action of the problem be understood well 

enough to choose suitable kinds of elements, and enough of them, to represent the 

physical action adequately.  

2. Elements too large would not give great detail variations in the field functions. 

3. An over-refined mesh will take long to solve, consuming computer resources.   

4. Usually you will have a finer mesh where the field gradients are higher, for 

example at stress concentrations – the user should identify such cases when setting 

up the model. 

5. Computer results must be checked to see if they are reasonable. 

6. Un-averaged stresses are usually discontinuous over element boundaries – the 

finer the mesh, the less the discontinuities. 
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1.4 Discretisation and Other Approximations 
 

1. There will also be modelling errors as the physical problem is analyzed using a 

simplified mathematical model. 

2. The type of elements may influence the solution and the accuracy thereof. 

3. The physical model has an infinite number of degrees-of-freedom (every point 

within the continuum body can displace), and the FEM model has a finite (limited) 

number of degrees-of-freedom. 

4. Good practise is to demonstrate convergence of the results with mesh refinement.  

For example, apply a coarse mesh and obtain the results, then refine the mesh 

somewhat and compare the results with that of the coarse mesh.  There will be a 

difference in results, depending on how sensitive the problem is to mesh size.  

Continue to decrease the mesh size until a further reduction has little to no 

influence on the results. 

 

1.5 Responsibility of the User 
 

1. It is always possible to produce an answer. 

2. Some results may appear reasonable on casual inspection. 

3. With a poor model, mesh refinement may not have a positive influence on the 

results. 

4. A responsible user must understand the physical nature of the problem and the 

behaviour of FEM well enough to prepare a suitable model and evaluate the 

quality of the results.   

 

See the publication:  Kurowski, P., 2001, Easily made errors mar FEA results, 

Machine Design, September 13, 2001, www.machinedesign.com 
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1.6 Elementary Matrix Algebra 
 

Finite Element theory can be very simplified when matrix algebra is used.  Loads are 

assembled load vectors and the stiffness of elements in a stiffness matrix.  Some elementary 

matrix algebra is needed for the manupilation of equations and obtaining solutions. 

 

In FEM, the following equation is solved for the nodal displacements D  

 RDK =                  A.6-1 

where K  is the stiffness matrix and R  is the load vector.  The nodal displacement D  can be 

solved by inverting the matric K  

 RKD 1−
=                  A.6-2 

Since the stiffness matrix is usually large and sparse, it is not efficient to store the whole 

matrix or to calculate its invert.  Other direct methods such as Gauss elimination or indirect 

methods can be used more efficiently.   

 

A square matrix is singular if it determinant is zero, and the inverse not defined.  In such a 

case a solution to Equation A.6-1 is not possible, even with direct or indirect methods.  

Examples of the determinant is given by, 
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The inverse of matrix A  is constructed using the cofactor matrix C , 
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where Mij is the determinant of the smaller matrix obtained by eliminating the ith row and jth 

column of A .  Examples, 
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