COSC A493 CODING THEORY
 SPRING 2006
 PROGRAMMING ASSIGNMENT 1

Write a program to generate all the code words for the binary block (7, 8) parity-check code. You may use any language you wish. There need be no input to the program. The output should be as follows:
< your name >
$(7,8)$ parity check code
List of message words in $B^{7} \quad$ List of code words in B^{8}

The program must generate the message words, and must compute the code words using a generator matrix.

Turn in the following items.
(1) A correct, documented program with your name printed on it.
(2) Output as specified above.

This assignment is due at the beginning of class on Wednesday, February 8.

MATRIX MULTIPLICATION

Assume two matrices exist, A and B, where A is $m \times n$ and B is $n \times c$. Then $A B$ is $m \times c$. Write the two matrices as follows:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 c} \\
b_{21} & b_{22} & \cdots & b_{2 c} \\
\vdots & \vdots & \cdots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n c}
\end{array}\right)
$$

Denote the product $A B$ by P. Then
$p_{11}=a_{11} * b_{11}+a_{12} * b_{21}+a_{13} b_{31}+\cdots+a_{1 n} * b_{n 1}$
$p_{11}=\sum_{k=1}^{n} a_{1 k} * b_{k 1}$
In the general situation, if we want the value of $p_{i j}$, then on the left, and in each product on the right, we replace the leftmost 1 by i and the rightmost 1 by j. The result is
$p_{i j}=a_{i 1} *$

