logd  In4

1 1

log<3> 1n<3>
)} 6. {1.7925}

3} 8. {3.6674}

1} 10. {—13.2571}
53} 12. {—.4849}

27} 14. {2.1023}

. ¢ 17. {2} 18. {3}
0112} 20. {—75.1209}

22. {—5} 23. 0

5. {1} 26. {%}

28. ¢ 29. {25}
31. {4} 32. {1)

15
3. {7}
5314} 36. {—2.4874}
38. {6} 39. {4}
} 41, {1,100}

2} 44, any real

1e power rule for
S, (am)n — amn.

- 1) (e —3)=0
3}

o I
jud
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Solve each equation. When solutions are irrational, give them as decimals correct to
four decimal places. See Examples 1—6.

5.3=6 6. 4 =12 7. 6" =38

8. 3% =13 9, 23 = 5" 10. 6*72 =4~

11. &1 =4 12. =12 13. 252 =38

14. 10> =5 15. 2= -3 16. 3* = —6

17. &% - % =¥ 18. &% - e =¥ 19. 100(1.02)" = 200
20. 500(1.05)** = 200 21. In(6x + 1) =In3 22. In(7 —x) =In12
23. log 4x — log(x — 3) = log 2 24. In(—x) + In3 = In(2x — 15)

25. log(2x — 1) + log 10x = log 10 26. In5x — In(2x — 1) = In4
@ log(x + 25) = 1 + log(2x = 7) 28. log(11x + 9) = 3 + log(x + 3)
29. log x + log(x — 21) =2 30. logx + log(3x — 13) =1

31. In(5 + 4x) —In(3 + x) =In3 32. In(2x +5) +Inx=1In7

33. logs 4x — loge(x — 3) = loge 12 34. log, 3x + log, 3 = logy(2x + 15)
35. 5x+2 — 22x—1 36. 6x>3 — 34x+]

.Inef—Ine*=Ineé 38. Ine¢" —2lne=Ine¢'

44.

logy(log, x) = 1 40. log x = Vlogx

3
log x> = (log x)* 42. log, V2x* = >

. Suppose you overhear the following statement: “I must reject any negative answer

when 1 solve an equation involving logarithms.” Is this correct? Write an explana-
tion of why it is or is not correct.

What values of x could not possibly be solutions of the following equation?

log,(4x — 7) + log,(x* +4) =0

Solve each equation for the indicated variable. Use logarithms to the appropriate bases.
See Example 7.

45.

E
]=E(1—e’R’/2) for t 46. r=p — klnt fort

k
p=a-+t a for x 48. T=T, + (T, — TH10™* for¢
nx

Relating Concepts

For individual or collaborative investigation
(Exercises 49—54)

Earlier, we introduced methods of solving quadratic equations and showed how they can
be applied to equations that are not actually quadratic, but are quadratic in form.
Consider the following equation and work Exercises 49—54 in order.

49.
50.

51.

e —4ef+3=0

The expression e is equivalent to (¢*)>. Why is this so?

The given equation is equivalent to (€")? — 4¢* + 3 = 0. Factor the left side of this
equation.

Solve the equation in Exercise 50 by using the zero-factor property. Give exact
solutions.

(continued)
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52. The graph intersects the x-

axisat O and In 3 ~ 1,099, FH 52. Support your solution(s) in Exercise 51 by graphing y = ¢ — g4 3 with 5
Y= e _dery 3 calculator.
10 FEI53. Use the graph from Exercise 52 to identify the x-intervals where y > 0. These inter-

} vals give the solutions of ¢ — 4o+ +3>0.
54. Use the graph from Exercise 52 and your answer to Exercise 53 to give the intervalg
grap

s . s Where e — 4¢* + 3 < ).

3 Find f~\(x), and 8ive the domain and range.

53. (=%,0) U (In 3, ) 55. f(x) = et — 4 56. f(x) = 21n 3%
54. (0,1n3)

1
§6. f7l(x) = ?e"’z; domain:

(=90, ); range: (0, o) 10 determine where certain Junctions are increasing.

57. (27,%) 58, (1,5) 57. logyx > 3 58. log, .2 < —1

59. {1.52} 60, {—.93,1.35)

1. {0} 62. {.69, 1.10}

3. {2.45, 5.66} 64. {.23} Eg Use a graphing calculator to solve each equation. Give irrationg] solutions correct 1
5. during 2011 the nearest hundredsh,

6. (a) 11.6451 m per sec 9. ¢+ Inx=5 60. ¢ — In(x + 1) = 3 61. 2¢* + | = 3¢

P) 24823 sec 62. ¢ + 6o = 5 63. logx ="~ 8r + 14 64, Inx = —v5 73

(Modeling)  Solve each application. See Example 8.

65. Average Annual Public University Costs The
table shows the cost of a year’s tuition, room
and board, and fees at 3 public university from
2000-2008. (Note: The amounts for
2002-2008 are projections.) Letting y repre-
sent the cost and x represent the number of
years since 2000, we find that the function
defined by

J(0) = 8160(1.06)"

$10,295
$10,810
$11,351
$11,918
$12,514

models the data quite well, According to this
function, when will the cost in 2000 be
doubled?

Source: WWW.princetonreview.com

66. Race Speed At the World Championship races held at Rome’s Olympic Stadiufrl
in 1987, American sprinter Carl Lewis ran the 100-m race in 9.86 sec. His speed in
meters per second after ¢ seconds is closely modeled by the function defined by

J@) = 11.65(1 — g~
(Source: Banks, Robert B., T, owing lIcebergs, Falling Dominoes, and Other
Adventures in Applied Mathematics, Princeton University Press, 1998.)

(a) How fast was he running as he crossed the finish line?
(b) After how many seconds was he running at the rate of 10 m per sec?
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70. (a) R =~ 4.4 w/m’ (a) Use the equation R = 6.3 In c% to determine the radiative forcing R (in watt
(b) 7'~ 4.5°F. This is less than per square meter) expected by the IPCC if the carbon dioxide level in thy,
that predicted by Arrhenius in atmosphere doubles from its preindustrial level.

1896; however, his values are still (b) Determine the global temperature increase T predicted by the IPCC if the carbo;

consistent with some current dioxide levels were to double. (Hint: T(R) = 1.03R.)
computer models.

71. 2.6 yr 72. 5.55yr

73. 6.48% 74, 4279 For Exercises 71-74, refer to the Jormula for compound interest given in Section 4.2,

tm
A=P<l +i>
m

71. Interest on an Account Tom Tupper wants to buy a $30,000 car. He has saved
$27,000. Find the number of years (to the nearest tenth) it will take for his $27,000
to grow to $30,000 at 4% interest compounded quarterly.

72. Investment Time Find f to the nearest hundredth if $1786 becomes $2063 at 2.6%,
with interest compounded monthly.

73. Interest Rate Find the interest rate that will produce $2500 if $2000 is left at inter-
est compounded semiannually for 3.5 yr.

74. Interest Rate At what interest rate will $16,000 grow to $20,000 if invested for
5.25 yr and interest is compounded quarterly?

4.6[ Applications and Models of Exponential Growth and Decay

The Exponential Growth or Decay Function = Growth Function Models = Decay Function Models

The Exponential Growth or Decay Function In many situations that
occur in ecology, biology, economics, and the social sciences, a quantity
changes at a rate proportional to the amount present. In such cases the amount
present at time ¢ is a special function of ¢ called an exponential growth or
decay function.

Looking Ahead to Calculus
The exponential growth and decay

’ 'ndér certain

function formulas are studied in calcu-
lus in conjunction with the topic
known as differential equations.

When k > 0, the function describes growth; in Section 4.2, we saw examples of
exponential growth: compound interest and atmospheric carbon dioxide, for ex-
ample. When k < 0, the function describes decay; one example of exponential
decay is radioactivity.

Growth Function Models The amount of time it takes for a quantity that
grows exponentially to become twice its initial amount is called its doubling
time. The first two examples involve doubling time.




